The circadian system is an endogenous timekeeping system that synchronizes physiology and behavior with the 24 h solar day. Mice with total deletion of the core circadian clock gene Bmal1 show circadian arrhythmicity, cognitive deficits, and accelerated age-dependent decline in adult neurogenesis as a consequence of increased oxidative stress. However, it is not yet known if the impaired adult neurogenesis is due to circadian disruption or to loss of the Bmal1 gene function. Therefore, we investigated oxidative stress and adult neurogenesis of the two principle neurogenic niches, the hippocampal subgranular zone and the subventricular zone in mice with a forebrain specific deletion of Bmal1 (Bmal1 fKO), which show regular circadian rhythmicity. Moreover, we analyzed the morphology of the olfactory bulb, as well as olfactory function in Bmal1 fKO mice. In Bmal1 fKO mice, oxidative stress was increased in subregions of the hippocampus and the olfactory bulb but not in the neurogenic niches. Consistently, adult neurogenesis was not affected in Bmal1 fKO mice. Although Reelin expression in the olfactory bulb was higher in Bmal1 fKO mice as compared to wildtype mice (Bmal1 WT), the olfactory function was not affected. Taken together, the targeted deletion of Bmal1 in mouse forebrain neurons is associated with a regional increase in oxidative stress and increased Reelin expression in the olfactory bulb but does not affect adult neurogenesis or olfactory function.
In the brain, generation of new neurons throughout life, the adult neurogenesis, has important functional aspects. Adult neurogenesis is a multistep process covering proliferation of neuronal stem/precursor cells (NPCs), migration of neuroblasts, differentiation into mature neurons, and integration into pre-existing neuronal networks. Moreover, neurogenesis is heterogeneous among mammals depending on species and age. 1 Under normal physiological conditions, adult neurogenesis takes place in specific regions of the adult mouse brain, known as "neurogenic niches,"
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.