The pan-cancer analysis of whole genomes The expansion of whole-genome sequencing studies from individual ICGC and TCGA working groups presented the opportunity to undertake a meta-analysis of genomic features across tumour types. To achieve this, the PCAWG Consortium was established. A Technical Working Group implemented the informatics analyses by aggregating the raw sequencing data from different working groups that studied individual tumour types, aligning the sequences to the human genome and delivering a set of high-quality somatic mutation calls for downstream analysis (Extended Data Fig. 1). Given the recent meta-analysis
The extent to which cells in normal tissues accumulate mutations throughout life is poorly understood. Some mutant cells expand into clones that can be detected by genome sequencing. We mapped mutant clones in normal esophageal epithelium from nine donors (age range 20 to 75 years). Somatic mutations accumulated with age and were mainly caused by intrinsic mutational processes. We found strong positive selection of clones carrying mutations in 14 cancer genes, with tens to hundreds of clones per square centimeter. In middle-aged and elderly donors, clones with cancer-associated mutations covered much of the epithelium, with NOTCH1 and TP53 mutations affecting 12 to 80% and 2 to 37% of cells, respectively. Unexpectedly, the prevalence of NOTCH1 mutations in normal esophagus was several times higher than in esophageal cancers. These findings have implications for our understanding of cancer and ageing.
We present TranslatorX, a web server designed to align protein-coding nucleotide sequences based on their corresponding amino acid translations. Many comparisons between biological sequences (nucleic acids and proteins) involve the construction of multiple alignments. Alignments represent a statement regarding the homology between individual nucleotides or amino acids within homologous genes. As protein-coding DNA sequences evolve as triplets of nucleotides (codons) and it is known that sequence similarity degrades more rapidly at the DNA than at the amino acid level, alignments are generally more accurate when based on amino acids than on their corresponding nucleotides. TranslatorX novelties include: (i) use of all documented genetic codes and the possibility of assigning different genetic codes for each sequence; (ii) a battery of different multiple alignment programs; (iii) translation of ambiguous codons when possible; (iv) an innovative criterion to clean nucleotide alignments with GBlocks based on protein information; and (v) a rich output, including Jalview-powered graphical visualization of the alignments, codon-based alignments coloured according to the corresponding amino acids, measures of compositional bias and first, second and third codon position specific alignments. The TranslatorX server is freely available at http://translatorx.co.uk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.