The physical mechanism involved in resistive switching phenomena occurring in devices based on ZnO nanowire (NW) arrays may vary considerably, also depending on the structure of the switching layer. In particular, it is shown here that the formation of a ZnO base layer between the metallic catalyst substrate and the NW, which is typical of CVD-grown ZnO NW arrays, should not be neglected when explaining the switching physical mechanism. The structural and electrical properties of this layer are investigated after the mechanical removal of NWs. Electrical measurements were performed in the presence of NWs and, after their removal, showed that the base alone exhibits resistive switching properties. The proposed switching mechanism is based on the creation/rupture of an oxygen vacancies conductive path along grain boundaries of the polycrystalline base. The creation of the filament is facilitated by the high concentration of vacancies at the grain boundaries that are oriented perpendicularly to the electrodes, as a direct consequence of the ZnO growth along the c-axis of the wurtzite lattice.
Graphene grows onto cobalt by means of diffusion of carbon atoms during the isothermal stage of exposure to hydrocarbon precursor, followed by precipitation during cooling. This method, largely applied with nickel catalyst, is known to produce continuous, but not uniform, layers with the concurrent presence of mono‐ and poly‐graphene areas. With the aid of Raman mapping of graphene still lying onto its catalyst, we are able to consider the possible origins for the observed distortions of the phonon modes with respect to the well‐known picture of the monolayer material. Optical effects, doping, the presence of multilayered islands, and strain are kept into account. It is shown that some observations can be interpreted in terms of the occurrence of isotropic strain with the uniaxial component superimposed at the metal discontinuities. Strain is proposed to originate from the difference between the thermal expansion coefficients of graphene and cobalt. The present paper shows that inhomogeneities in graphene grown onto catalysts with high C solubility are not always directly related to excess of precipitation. The observation of strain in as‐grown graphene opens the possibility of tailoring the electronic density of states via strain engineering directly during growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.