We report the effect of the quantum dot aspect ratio on the sub‐gap absorption properties of GaAs/AlGaAs quantum dot intermediate band solar cells. We have grown AlGaAs solar cells containing GaAs quantum dots made by droplet epitaxy. This technique allows the realization of strain‐free nanostructures with lattice matched materials, enabling the possibility to tune the size, shape, and aspect ratio to engineer the optical and electrical properties of devices. Intermediate band solar cells have been grown with different dot aspect ratio, thus tuning the energy levels of the intermediate band. Here, we show how it is possible to tune the sub‐gap absorption spectrum and the extraction of charge carriers from the intermediate band states by simply changing the aspect ratio of the dots. The tradeoff between thermal and optical extraction is in fact fundamental for the correct functioning of the intermediate band solar cells. The combination of the two effects makes the photonic extraction mechanism from the quantum dots increasingly dominant at room temperature, allowing for a reduction of the open circuit voltage of only 14 mV, compared to the reference cell.
We investigate in detail the role of strain relaxation and capping overgrowth in the self-assembly of InAs quantum dots by droplet epitaxy. InAs quantum dots were realized on an In0.6Al0.4As metamorphic buffer layer grown on a GaAs(111)A misoriented substrate. The comparison between the quantum electronic calculations of the optical transitions and the emission properties of the quantum dots highlights the presence of a strong quenching of the emission from larger quantum dots. Detailed analysis of the surface morphology during the capping procedure show the presence of a critical size over which the quantum dots are plastically relaxed.
We investigated the composition uniformity of InGaN epilayers in presence of metal droplets on the surface. We used Plasma Assisted MBE to grow an InGaN sample partially covered by metal droplets and performed structural and compositional analysis. The results showed a marked difference in indium incorporation between the region under the droplets and between them. Based on this observation we proposed a theoretical model able to explain the results by taking into account the vapour liquid solid growth that takes place under the droplet by direct impingement of nitrogen adatoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.