Brain acetylcholinesterase (AChE) forms stable complexes with amyloid- peptide (A) during its assembly into filaments, in agreement with its colocalization with the A deposits of Alzheimer's brain. The association of the enzyme with nascent A aggregates occurs as early as after 30 min of incubation. Analysis of the catalytic activity of the AChE incorporated into these complexes shows an anomalous behavior reminiscent of the AChE associated with senile plaques, which includes a resistance to low pH, high substrate concentrations, and lower sensitivity to AChE inhibitors. Furthermore, the toxicity of the AChE-amyloid complexes is higher than that of the A aggregates alone. Thus, in addition to its possible role as a heterogeneous nucleator during amyloid formation, AChE, by forming such stable complexes, may increase the neurotoxicity of A fibrils and thus may determine the selective neuronal loss observed in Alzheimer's brain.
The dried flower heads of Matricaria recutita L. (Asteraceae) are used in folk medicine to prepare a spasmolytic and sedative tea. Our fractionation of the aqueous extract of this plant led to the detection of several fractions with significant affinity for the central benzodiazepine receptor and to the isolation and identification of 5,7,4'-trihydroxyflavone (apigenin) in one of them. Apigenin competitively inhibited the binding of flunitrazepam with a Ki of 4 microM and had no effect on muscarinic receptors, alpha 1-adrenoceptors, and on the binding of muscimol to GABAA receptors. Apigenin had a clear anxiolytic activity in mice in the elevated plusmaze without evidencing sedation or muscle relaxant effects at doses similar to those used for classical benzodiazepines and no anticonvulsant action was detected. However, a 10-fold increase in dosage produced a mild sedative effect since a 26% reduction in ambulatory locomotor activity and a 35% decrement in hole-board parameters were evident. The results reported in this paper demonstrate that apigenin is a ligand for the central benzodiazepine receptors exerting anxiolytic and slight sedative effects but not being anticonvulsant or myorelaxant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.