Recurrently coupled networks of inhibitory neurons robustly generate oscillations in the gamma band. Nonetheless, the corresponding Wilson-Cowan type firing rate equation for such an inhibitory population does not generate such oscillations without an explicit time delay. We show that this discrepancy is due to a voltage-dependent spike-synchronization mechanism inherent in networks of spiking neurons which is not captured by standard firing rate equations. Here we investigate an exact low-dimensional description for a network of heterogeneous canonical Class 1 inhibitory neurons which includes the sub-threshold dynamics crucial for generating synchronous states. In the limit of slow synaptic kinetics the spike-synchrony mechanism is suppressed and the standard Wilson-Cowan equations are formally recovered as long as external inputs are also slow. However, even in this limit synchronous spiking can be elicited by inputs which fluctuate on a time-scale of the membrane time-constant of the neurons. Our meanfield equations therefore represent an extension of the standard Wilson-Cowan equations in which spike synchrony is also correctly described.
Chemical and electrical synapses shape the dynamics of neuronal networks. Numerous theoretical studies have investigated how each of these types of synapses contributes to the generation of neuronal oscillations, but their combined effect is less understood. This limitation is further magnified by the impossibility of traditional neuronal mean-field models -also known as firing rate models, or firing rate equations-to account for electrical synapses. Here we introduce a novel firing rate model that exactly describes the mean field dynamics of heterogeneous populations of quadratic integrate-and-fire (QIF) neurons with both chemical and electrical synapses. The mathematical analysis of the firing rate model reveals a well-established bifurcation scenario for networks with chemical synapses, characterized by a codimension-2 Cusp point and persistent states for strong recurrent excitatory coupling. The inclusion of electrical coupling generally implies neuronal synchrony by virtue of a supercritical Hopf bifurcation. This transforms the Cusp scenario into a bifurcation scenario characterized by three codimension-2 points (Cusp, Takens-Bogdanov, and Saddle-Node Separatrix Loop), which greatly reduces the possibility for persistent states. This is generic for heterogeneous QIF networks with both chemical and electrical coupling. Our results agree with several numerical studies on the dynamics of large networks of heterogeneous spiking neurons with electrical and chemical coupling.
We analyze a large system of heterogeneous quadratic integrate-and-fire (QIF) neurons with time delayed, all-to-all synaptic coupling. The model is exactly reduced to a system of firing rate equations that is exploited to investigate the existence, stability and bifurcations of fully synchronous, partially synchronous, and incoherent states. In conjunction with this analysis we perform extensive numerical simulations of the original network of QIF neurons, and determine the relation between the macroscopic and microscopic states for partially synchronous states. The results are summarized in two phase diagrams, for homogeneous and heterogeneous populations, which are obtained analytically to a large extent. For excitatory coupling, the phase diagram is remarkably similar to that of the Kuramoto model with time delays, although here the stability boundaries extend to regions in parameter space where the neurons are not self-sustained oscillators. In contrast, the structure of the boundaries for inhibitory coupling is different, and already for homogeneous networks unveils the presence of various partially synchronized states not present in the Kuramoto model: Collective chaos, quasiperiodic partial synchronization (QPS), and a novel state which we call modulated-QPS (M-QPS). In the presence of heterogeneity partially synchronized states reminiscent to collective chaos, QPS and M-QPS persist. In addition, the presence of heterogeneity greatly amplifies the differences between the incoherence stability boundaries of excitation and inhibition. Finally, we compare our results with those of a traditional (Wilson Cowan-type) firing rate model with time delays. The oscillatory instabilities of the traditional firing rate model qualitatively agree with our results only for the case of inhibitory coupling with strong heterogeneity. arXiv:1809.00607v2 [nlin.AO]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.