This paper presents a new design and a complete characterization of amplitude-modulation gyroscopes based on piezoresistive nanogauges. The working principle and optimization criteria of in-plane and out-of-plane devices relying on double frame decoupling and levered sense mode are discussed in light of sensitivity and resolution theoretical predictions. The architecture of driving and sensing electronics is also presented. The reduced thermo-mechanical damping with respect to capacitive configurations, and the inherently high output signal leads to white noise performance in the mdps/ √ Hz range within an area smaller than 0.35 mm 2 , at pressures in the millibar range. Sub-5-ppm linearity errors within 1000 dps are also demonstrated.[2015-0064]
This work presents in-plane and out-of-plane Coriolis rate gyroscopes based on nano-scale piezoresistive readout and using an eutectic bonding between the bottom wafer, where the sensor is formed, and the cap wafer, where routing and metal pads are fabricated. The gyroscopes feature a novel design with a central levered sense frame, to maximize the device symmetry and compactness. The position of the piezoresistive nanogauges along the lever system optimizes the scale-factor. Operation on a ± 3000 dps full-scale-range (FSR) demonstrates quite competitive performance, with a linearity error lower than 0.25% and a cross-axis rejection 50x better than state-of-the art consumer gyroscopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.