The gene encoding apolipoprotein E (APOE) on chromosome 19 is the only confirmed susceptibility locus for late-onset Alzheimer's disease. To identify other risk loci, we conducted a large genome-wide association study of 2,032 individuals from France with Alzheimer's disease (cases) and 5,328 controls. Markers outside APOE with suggestive evidence of association (P < 10(-5)) were examined in collections from Belgium, Finland, Italy and Spain totaling 3,978 Alzheimer's disease cases and 3,297 controls. Two loci gave replicated evidence of association: one within CLU (also called APOJ), encoding clusterin or apolipoprotein J, on chromosome 8 (rs11136000, OR = 0.86, 95% CI 0.81-0.90, P = 7.5 x 10(-9) for combined data) and the other within CR1, encoding the complement component (3b/4b) receptor 1, on chromosome 1 (rs6656401, OR = 1.21, 95% CI 1.14-1.29, P = 3.7 x 10(-9) for combined data). Previous biological studies support roles of CLU and CR1 in the clearance of beta amyloid (Abeta) peptide, the principal constituent of amyloid plaques, which are one of the major brain lesions of individuals with Alzheimer's disease.
We sought to identify new susceptibility loci for Alzheimer’s disease (AD) through a staged association study (GERAD+) and by testing suggestive loci reported by the Alzheimer’s Disease Genetic Consortium (ADGC). First, we undertook a combined analysis of four genome-wide association datasets (Stage 1) and identified 10 novel variants with P≤1×10−5. These were tested for association in an independent sample (Stage 2). Three SNPs at two loci replicated and showed evidence for association in a further sample (Stage 3). Meta-analyses of all data provide compelling evidence that ABCA7 (meta-P 4.5×10−17; including ADGC meta-P=5.0×10−21) and the MS4A gene cluster (rs610932, meta-P=1.8×10−14; including ADGC meta-P=1.2×10−16; rs670139, meta-P=1.4×10−9; including ADGC meta-P=1.1×10−10) are novel susceptibility loci for AD. Second, we observed independent evidence for association for three suggestive loci reported by the ADGC GWAS, which when combined shows genome-wide significance: CD2AP (GERAD+ P=8.0×10−4; including ADGC meta-P=8.6×10−9), CD33 (GERAD+ P=2.2×10−4; including ADGC meta-P=1.6×10−9) and EPHA1 (GERAD+ P=3.4×10−4; including ADGC meta-P=6.0×10−10). These findings support five novel susceptibility genes for AD.
Apolipoprotein E (APOE) dependent lifetime risks (LTRs) for Alzheimer Disease (AD) are currently not accurately known and odds ratios (ORs) alone are insufficient to assess these risks. We calculated AD lifetime risk in 7,351 cases and 10,132 controls from Caucasian ancestry using Rochester (USA) incidence data. At the age of 85 the LTR of AD without reference to APOE genotype was 11% in males and 14% in females. At the same age, this risk ranged from 51% for APOE44 male carriers to 60% for APOE44 female carriers, and from 23% for APOE34 male carriers to 30% for APOE34 female carriers, consistent with semi-dominant inheritance of a moderately penetrant gene. Using PAQUID (France) incidence data, estimates were globally similar except that at age 85 the LTRs reached 68% and 35 % for APOE 44 and APOE 34 female carriers, respectively. These risks are more similar to those of major genes in Mendelian diseases, such as BRCA1 in breast cancer, than those of low-risk common alleles identified by recent GWAS in complex diseases. In addition, stratification of our data by age- groups clearly demonstrates that APOE4 is a risk factor not only for late- onset but for early- onset AD as well. Together, these results urge a reappraisal of the impact of APOE in Alzheimer disease.
No abstract
Plasma concentrations of interleukin-1beta (IL-1beta), interleukin-6 (IL-6), C reactive protein (CRP) and alpha-1-antichymotrypsin (ACT) in 145 patients with probable Alzheimer's disease (AD) and 51 non-demented controls were measured. To investigate the cellular activation of peripheral immune system, plasma levels of neopterin were also investigated. Plasma levels of IL-1 were detectable in 17 patients with AD (13%) and only in one control (2%) and average levels of IL-1 were higher in AD patients than in controls (p < 0.001). IL-6 plasma levels were detectable in a higher proportion of AD and controls (53% and 27%, respectively), and were increased in patients with AD (p < 0.001). Plasma levels of ACT were increased in patients with AD (p < 0.001) and CRP levels were in the normal range. Plasma levels of neopterin were slightly lower in AD patients than in controls, but differences were not statistically significant. No significant correlation was observed between IL-1 and IL-6 levels or neopterin and cytokine levels in plasma from AD patients. Plasma levels of ACT negatively correlated with cognitive performances, as assessed by the mini mental state examination (MMSE; R = -0.26, p < 0.02) and positively correlated with the global deterioration state (GDS) of AD patients (R = 0.30, p < 0.007). Present findings suggested that detectable levels of circulating cytokines and increased ACT might not be derived by activation of peripheral immune system of AD patients. Detection of these molecules might be used for monitoring the progression of brain inflammation associated with AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.