A fast-field-cycling
NMR investigation was carried out on a set
of polyurethane cyclodextrin nanosponges, in order to gain information
on their textural properties, which have been proven to be quite difficult
to assess by means of ordinary porosimetric techniques. Experiments
were performed on both dry and wet samples, in order to evaluate the
behavior of the “nonexchangeable” C-bound
1
H nuclei, as well as the one of the mobile protons belonging to the
skeletal hydroxyl groups and the water molecules. The results acquired
for the wet samples accounted for the molecular mobility of water
molecules within the channels of the nanosponge network, leading back
to the possible pore size distribution. Owing to the intrinsic difficulties
involved in a quantitative assessment of the textural properties,
in the present study we alternatively propose an extension to nanosponges
of the concept of “connectivity”, which has been already
employed to discuss the properties of soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.