A fast-field-cycling NMR investigation was carried out on a set of polyurethane cyclodextrin nanosponges, in order to gain information on their textural properties, which have been proven to be quite difficult to assess by means of ordinary porosimetric techniques. Experiments were performed on both dry and wet samples, in order to evaluate the behavior of the “nonexchangeable” C-bound 1 H nuclei, as well as the one of the mobile protons belonging to the skeletal hydroxyl groups and the water molecules. The results acquired for the wet samples accounted for the molecular mobility of water molecules within the channels of the nanosponge network, leading back to the possible pore size distribution. Owing to the intrinsic difficulties involved in a quantitative assessment of the textural properties, in the present study we alternatively propose an extension to nanosponges of the concept of “connectivity”, which has been already employed to discuss the properties of soils.
Evaluation of nuclear magnetic relaxation dispersion (NMRD) curves obtained by the fast field cycling nuclear magnetic resonance (FFC-NMR) relaxometry technique is a valuable tool for analyzing the microscopic dynamics of condensed matter systems. However, quantitative data analysis involves several conceptual and practical issues. Moving forward from previous literature approaches, we propose a new analysis method, relying on the elaboration of the inverse integral transform of the NMRD curve. Our approach results in a true heuristic method, able to unambiguously individuate the dynamic domains in the system, thereby avoiding the possible introduction of any element of discretion. The analysis of some data sets relevant to real samples suggests the possibility that the results obtained with the heuristic method may be actually led back to some distinct physical/chemical features of the systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.