Recent work has demonstrated how data-driven AI methods can leverage consumer protection by supporting the automated analysis of legal documents. However, a shortcoming of data-driven approaches is poor explainability. We posit that in this domain useful explanations of classifier outcomes can be provided by resorting to legal rationales. We thus consider several configurations of memory-augmented neural networks where rationales are given a special role in the modeling of context knowledge. Our results show that rationales not only contribute to improve the classification accuracy, but are also able to offer meaningful, natural language explanations of otherwise opaque classifier outcomes.
We present SubjectivITA: the first Italian corpus for subjectivity detection on news articles, with annotations at sentence and document level. Our corpus consists of 103 articles extracted from online newspapers, amounting to 1,841 sentences. We also define baselines for sentence-and document-level subjectivity detection using transformerbased and statistical classifiers. Our results suggest that sentence-level subjectivity annotations may often be sufficient to classify the whole document.
Transformers changed modern NLP in many ways. However, they can hardly exploit domain knowledge, and like other blackbox models, they lack interpretability. Unfortunately, structured knowledge injection, in the long run, risks to suffer from a knowledge acquisition bottleneck. We thus propose a memory enhancement of transformer models that makes use of unstructured domain knowledge expressed in plain natural language. An experimental evaluation conducted on two challenging NLP tasks demonstrates that our approach yields better performance and model interpretability than baseline transformer-based architectures.
AMICA is an argument mining-based search engine, specifically designed for the analysis of scientific literature related to Covid-19. AMICA retrieves scientific papers based on matching keywords and ranks the results based on the papers' argumentative content. An experimental evaluation conducted on a case study in collaboration with the Italian National Institute of Health shows that the AMICA ranking agrees with expert opinion, as well as, importantly, with the impartial quality criteria indicated by Cochrane Systematic Reviews.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.