Rosa et al. Global Biogeography of Coastal Cephalopods are historical processes that may explain the contemporary Caribbean octopus richness and Mediterranean sepiolid endemism, respectively. Last, we discuss how the life cycles and strategies of cephalopods may allow them to adapt quickly to future climate change and extend the borealization of their distribution.
With the depletion of many commercial fish stocks and an increasing demand for marine protein for human consumption, cephalopods have become more important as a fishery resource. In EU waters, cephalopod stocks are not routinely assessed and exploitation of these species by large-scale fisheries is largely unregulated. For sustainable exploitation, adequate assessment and scientifically-supported management strategies are needed. However, there is still a lack of data on stock status and inadequate knowledge of the life history and ecology of these species. The present review examined more than 200 scientific articles, on life history and ecology of European cephalopods, published since 2013. It describes recent contributions to knowledge in the context of previously identified research priorities, along with recent advances towards sustainable fishing and aquaculture. It also identifies outstanding knowledge gaps. While some priority areas, such as the development of the species identification guides and evaluation of climate change impacts on cephalopods, have seen significant advances, other challenges remain for the future. These include monitoring of the life history traits and fishery status for the main commercially exploited species in the area, implementation of improved species identification methods during scientific surveys and fisheries monitoring, development of tools to identify stock units, and the study of the environmental and anthropogenic impacts on the stocks of cephalopods inhabiting European waters.
The use of cephalopod beaks in ecological and population dynamics studies has allowed major advances of our knowledge on the role of cephalopods in marine ecosystems in the last 60 years. Since the 1960’s, with the pioneering research by Malcolm Clarke and colleagues, cephalopod beaks (also named jaws or mandibles) have been described to species level and their measurements have been shown to be related to cephalopod body size and mass, which permitted important information to be obtained on numerous biological and ecological aspects of cephalopods in marine ecosystems. In the last decade, a range of new techniques has been applied to cephalopod beaks, permitting new kinds of insight into cephalopod biology and ecology. The workshop on cephalopod beaks of the Cephalopod International Advisory Council Conference (Sesimbra, Portugal) in 2022 aimed to review the most recent scientific developments in this field and to identify future challenges, particularly in relation to taxonomy, age, growth, chemical composition (i.e., DNA, proteomics, stable isotopes, trace elements) and physical (i.e., structural) analyses. In terms of taxonomy, new techniques (e.g., 3D geometric morphometrics) for identifying cephalopods from their beaks are being developed with promising results, although the need for experts and reference collections of cephalopod beaks will continue. The use of beak microstructure for age and growth studies has been validated. Stable isotope analyses on beaks have proven to be an excellent technique to get valuable information on the ecology of cephalopods (namely habitat and trophic position). Trace element analyses is also possible using beaks, where concentrations are significantly lower than in other tissues (e.g., muscle, digestive gland, gills). Extracting DNA from beaks was only possible in one study so far. Protein analyses can also be made using cephalopod beaks. Future challenges in research using cephalopod beaks are also discussed.
Morphometric analysis of biogenic recording structures within marine organisms has applications in stock assessment, taxonomics, and ecomorphological studies, with shape variation markedly influenced by both genetics and the surrounding environment. Geometric morphometrics (GM) is an alternative approach to the “traditional” method of collecting linear measurements and applying multivariate statistical methods to these data. Landmark- and outline-based GM methods are suggested to have several advantages over the “traditional” method. Due to the increasing popularity of GM methods in the modern literature, this chapter first compares different morphometric techniques, and then reviews the methods applied to recording structures, with a focus on GM outline-based analyses. It is clear that outline methods have become a popular method of analysis for structures such as otoliths, particularly for the purpose of distinguishing between population components. However, for other structures such as beaks this technique is only in its early stages of application and is more difficult to apply but shows great promise for future studies. The advantages of using a holistic approach, incorporating several techniques including outline analysis for stock identification purposes is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.