A mixed manna contains goods (that everyone likes), bads (that everyone dislikes), as well as items that are goods to some agents, but bads or satiated to others.If all items are goods and utility functions are homothetic, concave (and monotone), the Competitive Equilibrium with Equal Incomes maximizes the Nash product of utilities: hence it is welfarist (determined utility-wise by the feasible set of profiles), single-valued and easy to compute.We generalize the Gale-Eisenberg Theorem to a mixed manna. The Competitive division is still welfarist and related to the product of utilities or disutilities. If the zero utility profile (before any manna) is Pareto dominated, the competitive profile is unique and still maximizes the product of utilities. If the zero profile is unfeasible, the competitive profiles are the critical points of the product of disutilities on the efficiency frontier, and multiplicity is pervasive. In particular the task of dividing a mixed manna is either good news for everyone, or bad news for everyone.We refine our results in the practically important case of linear preferences, where the axiomatic comparison between the division of goods and that of bads is especially sharp. When we divide goods and the manna improves, everyone weakly benefits under the competitive rule; but no reasonable rule to divide bads can be similarly Resource Monotonic. Also, the much larger set of Non Envious and Efficient divisions of bads can be disconnected so that it will admit no continuous selection.
We compare the Egalitarian rule (aka Egalitarian Equivalent) and the Competitive rule (aka Comeptitive Equilibrium with Equal Incomes) to divide bads (chores). They are both welfarist: the competitive disutility profile(s) are the critical points of their Nash product on the set of efficient feasible profiles. The C rule is Envy Free, Maskin Monotonic, and has better incentives properties than the E rule. But, unlike the E rule, it can be wildly multivalued, admits no selection continuous in the utility and endowment parameters, and is harder to compute. Thus in the division of bads, unlike that of goods, no rule normatively dominates the other.
We consider fair allocation of indivisible items under additive utilities. We show that there exists a strongly polynomial-time algorithm that always computes an allocation satisfying Pareto optimality and proportionality up to one item even if the utilities are mixed and the agents have asymmetric weights. The result does not hold if either of Pareto optimality or PROP1 is replaced with slightly stronger concepts.
We study the set of possible joint posterior belief distributions of a group of agents who share a common prior regarding a binary state and who observe some information structure. Our main result is that, for the two agent case, a quantitative version of Aumann's Agreement Theorem provides a necessary and sufficient condition for feasibility. For any number of agents, a related "no trade" condition likewise provides a characterization of feasibility. We use our characterization to construct joint belief distributions in which agents are informed regarding the state, and yet receive no information regarding the other's posterior. We study a related class of Bayesian persuasion problems with a single sender and multiple receivers, and explore the extreme points of the set of feasible distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.