In present study, NiO:ZnO thin films in molar ratios of 1:0, 0:1, 3:1, 1:1 and 1:3 were formed on p-Si layers with Aluminium (Al) bottom contact. The dynamic sol-gel spin coating method was used as coating method. The Al top contacts were deposited on thin films and Al/NiO:ZnO/p-Si/Al photodiodes were fabricated. The structural and morphological properties of the photodiodes were determined by X-ray diffraction (XRD), emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (EDX). The photoresponse and electrical properties of the produced photodiodes were investigated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The Al/NiO:ZnO/p-Si/Al photodiodes were successfully fabricated. It was determined that the thin films were composed of nanostructures. All photodiodes are sensitive to light. It was seen that the photosensitivity of composite photodiodes was higher than the pure photodiodes and photosensitivity decreased as the ZnO ratio increased. It was determined that the most sensitive photodiode to light was the composite photodiode with a NiO:ZnO ratio of 3:1, and the highest photosensitivity was measured as 3.12 x 10 3 at 100 mW/cm 2 light intensity in this photodiode. In all photodiodes, the capacitance values decreased as the frequency increased. The results show that by changing the NiO:ZnO ratio, the photoresponse and electrical parameters of the photodiodes can be controlled and the produced photodiodes can be used as a photosensor in solar tracking systems and optoelectronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.