Four cubic zirconium-porphyrin frameworks, CPM-99(H2, Zn, Co, Fe), were synthesized by a molecular-configuration-guided strategy. Augmentation of meso-substituted side arms (with double-torsional biphenyl rings) of tetratopic porphyrin linkers leads to a successful implementation of zirconium-carboxylate frameworks with cubic 2.5 nm cage. The hard-templating effect of Zr6-polyoxo-cluster and uniformly embedded (metallo)porphyrin centers endow CPM-99 with highly desirable properties as precursors for oxygen reduction reaction (ORR) catalysts. The pyrolytic products not only retain the microcubic morphology of the parent CPM-99 but also possess porphyrinic active sites, hierarchical porosity, and highly conducting networks. CPM-99Fe-derived material, denoted CPM-99Fe/C, exhibits the best ORR activity, comparable to benchmark 20% Pt/C in alkaline and acidic media, but CPM-99Fe/C is more durable and methanol-tolerant. This work demonstrates a new route for the development of nonprecious metal ORR catalysts from stable metalloporphyrinic MOFs.
Metal-organic polyhedra (MOPs) or frameworks (MOFs) based on Cr(3+) are notoriously difficult to synthesize, especially as crystals large enough to be suitable for characterization of the structure or properties. It is now shown that the co-existence of In(3+) and Cr(3+) induces a rapid crystal growth of large single crystals of heterometallic In-Cr-MOPs with the [M8L12] (M=In/Cr, L=dinegative 4,5-imidazole-dicarboxylate) cubane-like structure. With a high concentration of protons from 12 carboxyl groups decorating every edge of the cube and an extensive H-bonded network between cubes and surrounding H2O molecules, the newly synthesized In-Cr-MOPs exhibit an exceptionally high proton conductivity (up to 5.8×10(-2) S cm(-1) at 22.5 °C and 98% relative humidity, single crystal).
We herein present the first case of energy transfer process in an inorganic chalcogenide-based semiconductor zeolite material (coded as RWY) serving as UV−vis light-harvesting host. A multistep vectorial energy transfer assay was fabricated by encapsulating acridine orange (AO) molecules into the RWY porous framework and further covering the formed capsules with rhodamine B (RhB) molecules. The UV high-energy excitations absorbed by RWY host were channeled to AO molecules and then onto RhB molecules to give rise to visible-light emission. The steady-state fluorescence and confocal microscope as well as fluorescent dynamics of emission reveal successfully the process of multistep vectorial energy transfer. This inorganic-host-involved energy transfer process has never been observed in an insulating oxide-based zeolite host system. Therefore, chalcogenide-based semiconductor zeolites could be a class of promising host materials to be further explored in the field of energy transfer and electron transfer between inorganic host and organic guest.
Two in one: A metal-organic framework obtained from three different inorganic building blocks (tetrameric Zn(4) O, trimeric Zn(3) OH, and monomeric Zn) posseses a nested cage-in-cage and framework-in-framework architecture. 24 Zn(4) O tetramers and eight Zn monomers form a sodalite cage into which a cubic cage made from eight Zn(3) (OH) trimers is nestled. Eight monomeric Zn(2+) centers interconnect these two cages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.