Research into the age-associated decline in the immune system has focused on the factors that contribute to the accumulation of senescent CD8 T cells. Less attention has been paid to the non-immune factors that may maintain the pool of naïve CD8 T cells. Here, we analyzed the status of the naïve CD8 T-cell population in healthy nonagenarians (≥90-year-old), old (60–79-year-old), and young (20–34-year-old) subjects. Naïve CD8 T cells were defined as CD28+CD95− as this phenotype showed a strong co-expression of the CD45RA+, CD45RO−, and CD127+ phenotypes. Although there was an age-associated decline in the percentage of CD28+CD95− CD8 T cells, the healthy nonagenarians maintained a pool of naïve CD28+CD95− cells that contained T-cell receptor excision circles (TREC)+ cells. The percentages of naïve CD28+CD95− CD8 T cells in the nonagenarians correlated with the sera levels of insulin-like growth factor binding protein 3 (IGFBP3) and leptin. Higher levels of triiodothyronine (T3) negatively correlated with the accumulation of TREC−CD28−CD95+ CD8 T cells from nonagenarians. These results suggest a model in which IGFBP3, leptin and T3 act as non-immune factors to maintain a larger pool of naïve CD8 T cells in healthy nonagenarians.
Given the protective roles of 25-hydroxyvitamin D (25[OH]D or vitamin D) in musculoskeletal health and the potential beneficial effects of vitamin D supplementation in reducing the risk of various chronic diseases, intensive repletion of vitamin D has been widely advocated. Of note, CD8 T cells have the highest levels of the vitamin D receptor compared with other major immune cells. The effects of vitamin D on CD8 T cells during aging, however, remain unclear. This study determined the relationship between vitamin D levels and CD8 T-cell status in 34 healthy female subjects (all >60 years old). The CD8 T cell phenotype was defined by the surface expression of CD28 and CD95. The low-25(OH)D serum groups (≤30 ng/ml) had higher percentages of CD28+CD95−CD8+ (naïve) T cells and lower percentages of CD28+CD95+CD8+ (effector) T cells. By contrast, subjects with high levels of 25(OH)D had very low percentages of naïve CD8 T cells but very high percentages of effector CD8 T cells. There was a significant inverse correlation between 25(OH)D levels and the frequency of naïve CD8 T cells. The results show that higher levels of vitamin D are correlated with decreased frequencies of naïve CD8 T cells during early aging, suggesting that higher levels of 25(OH)D accelerate CD8 T-cell senescence. These results warrant the further evaluation of the effects of vitamin D supplementation in immune aging.
A decrease in the expression of Th1 cytokines has been associated with age-related decrease in cytotoxic T-lymphocyte (CTL) function. We utilized an E1-deleted adenovirus (Ad) vector to deliver the murine interleukin-12 (IL-12) gene in order to enhance the antivirus CTL response. Wild-type (WT) Ad was administered 3 days after AdIL-12 treatment, when IL-12 production was at its peak and the anti-Ad antibody response had not yet begun to develop. Before receiving AdIL-12 treatment, aged (18 month old) mice exhibited a 58% decrease in the number of virus-specific CTLs, and a 30% decrease in in vivo CTL activity as compared to young (2 month old) mice. After AdIL-12 treatment, aged mice displayed a greater increase in IL-12 expression and endogenous production of interferon-gamma than observed in young mice. When infected with WT Ad, these AdIL-12-treated aged mice exhibited an increased in vivo CTL response and an in vitro proliferative response that was similar to those in young mice. The frequencies of occurrence of D(b)-E1Bp(+)CD8(+) T cells in the spleen, liver, and lung in aged mice were higher than the corresponding values in young mice. These results indicate that IL-12 treatment significantly promotes the virus-specific CTL response in aged mice and, more importantly, specifically targets the virally infected organs, such as the liver and lung, promoting enhanced CTL activity against the virus.
Dandruff is a common scalp condition affecting almost half of the world's population. Despite its high prevalence, the exact pathophysiology is not well established and is understood to be multifactorial, with factors such as fungal colonisation, sebaceous gland activity and individual factors being implicated. There is a need for an effective and safe shampoo that can target the above factors. Hence, we have developed a shampoo formulation with properties of oil control, moisturising, non‐irritative, anti‐fungal, anti‐microbial, and itch relieving.In this interventional, open‐label study, we evaluated the efficacy and safety of this shampoo in reducing the clinical signs of dandruff and pruritus in patients with pre‐existing mild to moderate dandruff over a course of 21‐day treatment duration through self‐assessment and objective clinical evaluations.After continued use of the shampoo, there was a significant decrease in the adherent and loose scalp flaking scores. Mean pruritus scores also decreased significantly across the 21‐day time points. There were also no adverse events or skin intolerances reported.This study showed that our shampoo formulation has led to significant reduction in both adherent and loose scalp flaking and pruritus when used in individuals suffering from mild to moderate dandruff. As such, it is an ideal shampoo which can be used to effectively control dandruff.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.