Transition-metal-catalyzed C-alkylation of ketones and secondary alcohols, with alcohols, avoids use of organometallic or environmentally unfriendly alkylating agents by means of borrowing hydrogen (BH) or hydrogen autotransfer (HA) activation of the alcohol substrates. Water is formed as the only by-product, thus making the BH process atom-economical and environmentally benign. Diverse homogeneous and heterogeneous transition-metal catalysts, ketones, and alcohols can be used for this transformation, thus rendering the BH process promising for replacing those procedures that use traditional alkylating agents. This Minireview summarizes the advances during the last five years in transition-metal-catalyzed BH α-alkylation of ketones, and β-alkylation of secondary alcohols with alcohols. A discussion on the application of the BH strategy for C-C bond formation is included.
LOXL2 catalyzes the oxidative deamination of ε-amines of lysine and hydroxylysine residues within collagen and elastin, generating reactive aldehydes (allysine). Condensation with other allysines or lysines drives the formation of inter- and intramolecular cross-linkages, a process critical for the remodeling of the ECM. Dysregulation of this process can lead to fibrosis, and LOXL2 is known to be upregulated in fibrotic tissue. Small-molecules that directly inhibit LOXL2 catalytic activity represent a useful option for the treatment of fibrosis. Herein, we describe optimization of an initial hit 2, resulting in identification of racemic-trans-(3-((4-(aminomethyl)-6-(trifluoromethyl)pyridin-2-yl)oxy)phenyl)(3-fluoro-4-hydroxypyrrolidin-1-yl)methanone 28, a potent irreversible inhibitor of LOXL2 that is highly selective over LOX and other amine oxidases. Oral administration of 28 significantly reduced fibrosis in a 14-day mouse lung bleomycin model. The (R,R)-enantiomer 43 (PAT-1251) was selected as the clinical compound which has progressed into healthy volunteer Phase 1 trials, making it the "first-in-class" small-molecule LOXL2 inhibitor to enter clinical development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.