Including the impacts of climate change in decision making and planning processes is a challenge facing many regional governments including the New South Wales (NSW) and Australian Capital Territory (ACT) governments in Australia. NARCliM (NSW/ACT Regional Climate Modelling project) is a regional climate modelling project that aims to provide a comprehensive and consistent set of climate projections that can be used by all relevant government departments when considering climate change. To maximise end user engagement and ensure outputs are relevant to the planning process, a series of stakeholder workshops were run to define key aspects of the model experiment including spatial resolution, time slices, and output variables. As with all such experiments, practical considerations limit the number of ensemble members that can be simulated such that choices must be made concerning which global climate models (GCMs) to downscale from, and which regional climate models (RCMs) to downscale with. Here a methodology for making these choices is proposed that aims to sample the uncertainty in both GCM and RCM ensembles, as well as spanning the range of future climate projections present in the GCM ensemble. The RCM selection process uses performance evaluation metrics to eliminate poor performing models from consideration, followed by explicit consideration of model independence in order to retain as much information as possible in a small model subset. In addition to these two steps the GCM selection process also considers the future change in temperature and precipitation projected by each GCM. The final GCM selection is based on a subjective consideration of the GCM independence and future change. The created ensemble provides a more robust view of future regional climate changes. Future research is required to determine objective criteria that could replace the subjective aspects of the selection process.Published by Copernicus Publications on behalf of the European Geosciences Union.
Global climate models (GCMs) are useful tools for assessing climate change impacts on temperature and rainfall. Although climate data from various GCMs have been increasingly used in climate change impact studies, GCMs configurations and module characteristics vary from one to another. Therefore, it is crucial to assess different GCMs to confirm the extent to which they can reproduce the observed temperature and rainfall. Rather than assessing the interdependence of each GCM, the purpose of this study is to compare the capacity of four different multi-model ensemble (MME) methods (random forest [RF], support vector machine [SVM], Bayesian model averaging [BMA] and the arithmetic ensemble mean [EM]) in reproducing observed monthly rainfall and temperature. Of these four methods, the RF and SVM demonstrated a significant improvement over EM and BMA in terms of performance criteria. The relative importance of each GCM based on the RF ensemble in reproducing rainfall and temperature could also be ranked. We compared the GCMs importance and Taylor skill score and found that their correlation was 0.95 for temperature and 0.54 for rainfall. Our results also demonstrated that the number of GCMs ensemble simulations could be reduced from 33 to 25 in RF model while maintaining predictive error less than 2%. Having such a representative subset of simulations could reduce computational costs for climate impact modelling and maintain the quality of ensemble at the same time. We conclude that machine learning MME could be efficient and useful with improved accuracy in reproducing historical climate variables.
This paper presents spatial interpolation techniques to produce finer-scale daily rainfall data from regional climate modeling. Four common interpolation techniques (ANUDEM, Spline, IDW, and Kriging) were compared and assessed against station rainfall data and modeled rainfall. The performance was assessed by the mean absolute error (MAE), mean relative error (MRE), root mean squared error (RMSE), and the spatial and temporal distributions. The results indicate that Inverse Distance Weighting (IDW) method is slightly better than the other three methods and it is also easy to implement in a geographic information system (GIS). The IDW method was then used to produce forty-year (1990–2009 and 2040–2059) time series rainfall data at daily, monthly, and annual time scales at a ground resolution of 100 m for the Greater Sydney Region (GSR). The downscaled daily rainfall data have been further utilized to predict rainfall erosivity and soil erosion risk and their future changes in GSR to support assessments and planning of climate change impact and adaptation in local scale.
This study examines the subset climate model ensemble size required to reproduce certain statistical characteristics from a full ensemble. The ensemble characteristics examined are the root mean square error, the ensemble mean and standard deviation. Subset ensembles are created using measures that consider the simulation performance alone or include a measure of simulation independence relative to other ensemble members. It is found that the independence measure is able to identify smaller subset ensembles that retain the desired full ensemble characteristics than either of the performance based measures. It is suggested that model independence be considered when choosing ensemble subsets or creating new ensembles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.