To achieve the goals of carbon peak and carbon neutrality, the low-carbon transformation (LCT) of high-carbon firms is inevitable. We construct game models of a supply chain with different dominant types under a mixed carbon policy that embraces carbon cap-and-trade and carbon tax. Solving each dominant model, we derive the effective area and optimal threshold of the mixed carbon policy to guide LCT. We find that the selling price, market demand, and profit of the supply chain system are equal in different dominant models due to the mixed carbon policy, but when a company dominates the supply chain, its profit is higher than when it is a subordinate. In addition, the high-carbon manufacturers (HCM) will pursue LCT only when the sum of the carbon tax rates and carbon trading prices is within a certain threshold, and the subordinate HCM are more likely to be driven to pursue LCT. Therefore, the government should adopt a differentiated hybrid carbon policy, setting a high (low) carbon tax rate for the HCM in a dominant (subordinate) position.
With the popularization of platform economics, many manufacturers are shifting their operations from offline to online, forming platform supply chains (PSCs), which combine e-commerce with supply chain management. To study the influences of network externalities and fairness concerns on advertising strategies of the platform supply chain (PSC), we construct decentralized decision-making models, with and without fairness concerns. Then, we solve the optimal decisions regarding PSC and use numerical examples to verify the conclusions of the decision models. We further analyze the internal influences of advertising strategies on network externalities in the extended model. We find that the network externalities are beneficial to the PSC system, but the manufacturer’s fairness concerns are not beneficial to the PSC. The advertising strategies of the network platform are not affected by network externalities and fairness concerns. In the extended model, the manufacturer can obtain more profits, but the network platform yields less profit than the decentralized model without fairness concerns. Moreover, the more sensitive the network externalities are to the change in advertising strategies, the greater the profits for the PSC members.
PurposeThe purpose of this study is to investigate which of the two carbon allowance allocation methods (CAAMs), i.e. grandfathered system carbon allowance allocation (GCAA) and baseline system carbon allowance allocation (BCAA), is more beneficial to capital-constrained supply chains under the carbon emission allowance repurchase strategy (CEARS).Design/methodology/approachAdopting CEARS to ease the capital-constrained supply chains, this study develops two-period game models with manufacturers as leaders and retailers as followers from the perspective of profit and social welfare maximization under two CAAMs (GCAA and BCAA), where the first period produces normal products, and the second period produces low-carbon products.FindingsFirst, higher carbon-saving can better use CEARS and achieve a higher supply chain profit under the two CAAMs. However, the higher the end-of-period carbon price is, the lower the social welfare is. Second, when carbon-saving is small, GCAA achieves both economic and environmental benefits; BCAA reduces carbon emissions at the expense of economic benefit. Third, the supply chain members gain higher profits and social welfare under GCAA, so the government and supply chain members are more inclined to choose GCAA.Originality/valueBy analyzing the profits and total carbon emissions of capital-constrained supply chains under GCAA and BCAA, this study provides theoretical references for retailers and capital-constrained manufacturers. In addition, by comparing the difference in social welfare under GCAA and BCAA, it provides a basis for the government to choose a reasonable CAAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.