The microbial composition and environmental factors can take a great influence on community succession during the solid-state fermentation (SSF) of Maotai-flavor Baijiu. In this paper, high-throughput sequencing was used to reveal the dominant microorganisms and the evolution process of microbial community structure in the initial fermentation of Maotai-flavor Baijiu. The correlation analysis was carried out for the relationship between physicochemical factors and fermented microbes. The results showed that microorganisms were obviously enriched and the diversity of bacteria and fungi showed a downward trend during the heap fermentation process of Maotai-flavor Baijiu. However, the diversity of fungi in the pit fermentation process increased. Generally, Lactobacillus, Pichia, and Saccharomyces were the dominant microorganisms in the initial fermentation of Maotai-flavor Baijiu. According to the redundancy analysis, we found that reducing sugar was the key driving factor for microbial succession in the heap fermentation, while acidity, alcohol, and temperature were the main driving forces in pit fermentation. This study revealed the microbial succession and its related environmental factors in the initial fermentation of Maotai-flavor Baijiu, which will enrich our knowledge of the mechanism of solid-state liquor fermentation.
Tetramethylpyrazine (TTMP) is a widely used flavoring additive with a nutty and roasted taste. Solid-state fermentation (SSF) of wheat bran for producing TTMP was studied with Bacillus subtilis CCTCC M208157, which was an exogenous precursor-independent TTMP-producing strain. Factors influencing endogenous precursor supply and TTMP formation in this strain were investigated. According to the findings, glucose and diammonium phosphate contributed to TTMP production but excess salts caused an inhibition on cell growth and TTMP formation. Then a two-step supply strategy was applied: 10 % glucose was added at the beginning of the process to allow acetoin formation, which was the precursor of TTMP, while 3 % diammonium phosphate was added only after acetoin accumulation reached its maximum. By applying this strategy, acetoin increased from 5.44 to 13.2 g/kg dry substrate (kgds), and consequently the yield of TTMP increased by 6.8 folds from 0.44 to 3.01 g/kgds. This was the first report of using a two-step supply strategy for TTMP production by SSF, which proved to be conducive to TTMP production in this strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.