Spatial frequency domain imaging (SFDI) is a wide-field diffuse optical imaging modality that has attracted considerable interest in recent years. Typically, diffuse reflectance measurements of spatially modulated light are used to quantify the optical absorption and reduced scattering coefficients of tissue, and with these, chromophore concentrations are extracted. However, uncertainties in estimated absorption and reduced scattering coefficients are rarely reported, and we know of no method capable of providing these when look-up table (LUT) algorithms are used to recover the optical properties. We present a method to generate optical property uncertainty estimates from knowledge of diffuse reflectance measurement errors. By employing the Cramér-Rao bound, we can quickly and efficiently explore theoretical SFDI performance as a function of spatial frequencies and sample optical properties, allowing us to optimize spatial frequency selection for a given application. In practice, we can also obtain useful uncertainty estimates for optical properties recovered with a two-frequency LUT algorithm, as we demonstrate with tissue-simulating phantom and experiments. Finally, we illustrate how absorption coefficient uncertainties can be propagated forward to yield uncertainties for chromophore concentrations, which could significantly impact the interpretation of experimental results.
Although millions of transcription factor binding sites, or cistromes, have been identified across the human genome, defining which of these sites is functional in a given condition remains challenging. Using CRISPR/Cas9 knockout screens and gene essentiality or fitness as the readout, we systematically investigated the essentiality of over 10,000 FOXA1 and CTCF binding sites in breast and prostate cancer cells. We found that essential FOXA1 binding sites act as enhancers to orchestrate the expression of nearby essential genes through the binding of lineage-specific transcription factors. In contrast, CRISPR screens of the CTCF cistrome revealed 2 classes of essential binding sites. The first class of essential CTCF binding sites act like FOXA1 sites as enhancers to regulate the expression of nearby essential genes, while a second class of essential CTCF binding sites was identified at topologically associated domain (TAD) boundaries and display distinct characteristics. Using regression methods trained on our screening data and public epigenetic profiles, we developed a model to predict essential cis-elements with high accuracy. The model for FOXA1 essentiality correctly predicts noncoding variants associated with cancer risk and progression. Taken together, CRISPR screens of cis-regulatory elements can define the essential cistrome of a given factor and can inform the development of predictive models of cistrome function.
SUMMARY The function of enhancer RNAs (eRNAs) in transcriptional regulation remains obscure. By analyzing the genome-wide nascent transcript profiles in breast cancer cells, we identify a special group of eRNAs that are essential for estrogen-induced transcriptional repression. Using eRNAs of TM4SF1 and EFEMP1 as the paradigms, we find that these RNA molecules not only stabilize promoter-enhancer interactions but also recruit liganded estrogen receptor α (ERα) to particular enhancer regions, facilitate the formation of a functional transcriptional complex, and cause gene silencing. Interestingly, ERα is shown to directly bind with eRNAs by its DNA-binding domain. These eRNAs help with the formation of a specific ERα-centered transcriptional complex and promote the association of the histone demethylase KDM2A, which dismisses RNA polymerase II from designated enhancers and suppresses the transcription of target genes. Our work demonstrates a complete mechanism underlying the action of eRNAs in modulating and refining the locus-specific transcriptional program.
, "Wearable near-infrared optical probe for continuous monitoring during breast cancer neoadjuvant chemotherapy infusions," J. Biomed. Opt. 22(1), 014001 (2017), doi: 10.1117/1.JBO.22.1.014001. Abstract. We present a new continuous-wave wearable diffuse optical probe aimed at investigating the hemodynamic response of locally advanced breast cancer patients during neoadjuvant chemotherapy infusions. The system consists of a flexible printed circuit board that supports an array of six dual wavelength surface-mount LED and photodiode pairs. The probe is encased in a soft silicone housing that conforms to natural breast shape. Probe performance was evaluated using tissue-simulating phantoms and in vivo normal volunteer measurements. High SNR (71 dB), low source-detector crosstalk (−60 dB), high measurement precision (0.17%), and good thermal stability (0.22% V rms ∕°C) were achieved in phantom studies. A cuff occlusion experiment was performed on the forearm of a healthy volunteer to demonstrate the ability to track rapid hemodynamic changes. Proof-of-principle normal volunteer measurements were taken to demonstrate the ability to collect continuous in vivo breast measurements. This wearable probe is a first of its kind tool to explore prognostic hemodynamic changes during chemotherapy in breast cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.