A theranostic system of image-guided phototherapy is considered as a potential technique for cancer treatment because of the ability to integrate diagnostics and therapies together, thus enhancing accuracy and visualization during the treatment. In this work, we realized photoacoustic (PA) imaging-guided photothermal (PT)/photodynamic (PD) combined cancer treatment just via a single material, MoO quantum dots (QDs). Due to their strong NIR harvesting ability, MoO QDs can convert incident light into hyperthermia and sensitize the formation of singlet oxygen synchronously as evidenced by in vitro assay, hence, they can behave as both PT and PD agents effectively and act as a "dual-punch" to cancer cells. In a further study, elimination of solid tumors from HeLa-tumor bearing mice could be achieved in a MoO QD mediated phototherapeutic group without obvious lesions to the major organs. In addition, the desired PT effect also makes MoO QDs an exogenous PA contrast agent for in vivo live-imaging to depict tumors. Compared with previously reported theranostic systems that put several components into one system, our multifunctional agent of MoO QDs is exempt from unpredictable mutual interference between components and ease of leakage of virtual components from the composited system.
Integration of cancer diagnosis and treatment, namely theranostics, is an important issue in the biomedical field. Benefiting from an excellent photothermal effect, ROS generation ability, and the desired mesoporous structure of the TiO2–x matrix, we strategically designed and fabricated a TiO2–x based theranostic system for realizing fluorescence/photoacoustic tomography (PAT) bimodal imaging guided triple therapy for photothemal/photodynamic/chemotherapy in this work. Nonstoichiometric TiO2–x nanospheres are excellent near-infrared absorptive material, which takes on both photosensitizer and photothermal agent roles in implementing PDT/PTT combination therapy and PAT imaging. Moreover, the mesoporous structure of TiO2–x also allowed drug loading, and the polydopamine sealing layer enabled it to induce NIR/pH-triggered drug controlled release. Resultantly, both the in vitro and in vivo experiment manifested the remarkable tumor inhibition and tumor imaging effects by the TiO2–x based theranostic system. The antitumor mechanism was attributable to a synergistic therapeutic effect (combination index = 0.318) of DOX-induced DNA damage, and PDT/PTT caused mitochondrial dysfunction and a change in the cell membrane permeability. Innovatively, the B-mode ultrasonography was adopted to monitor the rehabilitation process at the solid tumor site after treatment, which observed a liquefaction necrosis process.
Phototheranostic agents in the second near‐infrared (NIR‐II) window (1000–1700 nm) are emerging as a promising theranostic platform for precision medicine due to enhanced penetration depth and minimized tissue exposure. The development of metabolizable NIR‐II nanoagents for imaging‐guided therapy are essential for noninvasive disease diagnosis and precise ablation of tumors. Herein, metabolizable highly absorbing NIR‐II conjugated polymer dots (Pdots) are reported for the first time for photoacoustic imaging guided photothermal therapy (PTT). The unique design of low‐bandgap D‐A π‐conjugated polymer (DPP‐BTzTD) together with modified nanoreprecipitation conditions allows to fabricate NIR‐II absorbing Pdots with ultrasmall (4 nm) particle size. Extensive experimental tests demonstrate that the constructed Pdots exhibit good biocompatibility, excellent photostability, bright photoacoustic signals, and high photothermal conversion efficiency (53%). In addition, upon tail‐vein intravenous injection of tumor‐bearing mice, Pdots also show high‐efficient tumor ablation capability with rapid excretion from the body. In particular, both in vitro and in vivo assays indicate that the Pdots possess remarkable PTT performance under irradiation with a 1064 nm laser with 0.5 W cm−2, which is much lower than its maximum permissible exposure limit of 1 W cm−2. This pilot study thus paves a novel avenue for the development of organic semiconducting nanoagents for future clinical translation.
Aptamers are exciting smart molecular probes for specific recognition of disease biomarkers. A number of strategies have been developed to convert target−aptamer binding into physically detectable signals. Since the aptamer sequence was first discovered, a large variety of aptamer-based biosensors have been developed, with considerable attention paid to their potential applications in clinical diagnostics. So far, a variety of techniques in combination with a wide range of functional nanomaterials have been used for the design of aptasensors to further improve the sensitivity and detection limit of target determination. In this paper, the advantages of aptamers over traditional antibodies as the molecular recognition components in biosensors for high-throughput screening target molecules are highlighted. Aptamer−target pairing configurations are predominantly single-or dual-site binding; the design of recognition modes of each aptamer−target pairing configuration is described. Furthermore, signal transduction strategies including optical, electrical, mechanical, and masssensitive modes are clearly explained together with examples. Finally, we summarize the recent progress in the development of aptamer-based biosensors for clinical diagnosis, including detection of cancer and disease biomarkers and in vivo molecular imaging. We then conclude with a discussion on the advanced development and challenges of aptasensors.
Semiconducting polymer dots (Pdots) have recently attracted considerable attention because of their photocatalytic activity as well as tunable optical band gap. In this contribution, we describe the therapeutic application of Pdots through in situ photocatalytic hydrogen generation. Liposomes were employed as nanoreactors to confine the Pdot photocatalyst, reactants, intermediates, and by‐products. Upon photon absorption by the Pdots, the catalytic cycle is initiated and repeated within the aqueous interior, while the H2 product diffuses across the lipid bilayer to counteract reactive oxygen species (ROS) overexpressed in diseased tissues. Ensemble and single‐particle Förster resonance energy transfer microscopy confirmed the proposed nanoreactor model. We demonstrate that a liposomal nanoreactor containing Pdots and a sacrificial electron donor is a potential photocatalytic nanoreactor for in situ hydrogen therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.