Purpose
Big data is a key component to realise the vision of smart factories, but the implementation and usage of big data analytical tools in the smart factory context can be fraught with challenges and difficulties. The purpose of this paper is to identify potential barriers that hinder organisations from applying big data solutions in their smart factory initiatives, as well as to explore causal relationships between these barriers.
Design/methodology/approach
The study followed an inductive and exploratory nature. Ten in-depth semi-structured interviews were conducted with a group of highly experienced SAP consultants and project managers. The qualitative data collected were then systematically analysed by using a thematic analysis approach.
Findings
A comprehensive set of barriers affecting the implementation of big data solutions in smart factories had been identified and divided into individual, organisational and technological categories. An empirical framework was also developed to highlight the emerged inter-relationships between these barriers.
Originality/value
This study built on and extended existing knowledge and theories on smart factory, big data and information systems research. Its findings can also raise awareness of business managers regarding the complexity and difficulties for embedding big data tools in smart factories, and so assist them in strategic planning and decision making.
PurposeThe benefits of artificial intelligence (AI) related technologies for manufacturing firms are well recognized, however, there is a lack of industrial AI (I-AI) maturity models to enable companies to understand where they are and plan where they should go. The purpose of this study is to propose a comprehensive maturity model in order to help manufacturing firms assess their performance in the I-AI journey, shed lights on future improvement, and eventually realize their smart manufacturing visions.Design/methodology/approachThis study is based on (1) a systematic review of literature on assessing I-AI-related technologies to identify relevant measured indicators in the maturity model, and (2) semi-structured interviews with domain experts to determine maturity levels of the established model.FindingsThe I-AI maturity model developed in this study includes two main dimensions, namely “Industry” and “Artificial Intelligence”, together with 12 first-level indicators and 35 second-level indicators under these dimensions. The maturity levels are divided into five types: planning level, specification level, integration level, optimization level, and leading level.Originality/valueThe maturity model integrates indicators that can be used to assess AI-related technologies and extend the existing maturity models of smart manufacturing by adding specific technical and nontechnical capabilities of these technologies applied in the industrial context. The integration of the industry and artificial intelligence dimensions with the maturity levels shows a road map to improve the capability of applying AI-related technologies throughout the product lifecycle for achieving smart manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.