ImportanceCoronary artery calcium score and polygenic risk score have each separately been proposed as novel markers to identify risk of coronary heart disease (CHD), but no prior studies have directly compared these markers in the same cohorts.ObjectiveTo evaluate change in CHD risk prediction when a coronary artery calcium score, a polygenic risk score, or both are added to a traditional risk factor–based model.Design, Setting, and ParticipantsTwo observational population-based studies involving individuals aged 45 years through 79 years of European ancestry and free of clinical CHD at baseline: the Multi-Ethnic Study of Atherosclerosis (MESA) study involved 1991 participants at 6 US centers and the Rotterdam Study (RS) involved 1217 in Rotterdam, the Netherlands.ExposureTraditional risk factors were used to calculate CHD risk (eg, pooled cohort equations [PCEs]), computed tomography for the coronary artery calcium score, and genotyped samples for a validated polygenic risk score.Main Outcomes and MeasuresModel discrimination, calibration, and net reclassification improvement (at the recommended risk threshold of 7.5%) for prediction of incident CHD events were assessed.ResultsThe median age was 61 years in MESA and 67 years in RS. Both log (coronary artery calcium+1) and polygenic risk score were significantly associated with 10-year risk of incident CHD (hazards ratio per SD, 2.60; 95% CI, 2.08-3.26 and 1.43; 95% CI, 1.20-1.71, respectively), in MESA. The C statistic for the coronary artery calcium score was 0.76 (95% CI, 0.71-0.79) and for the polygenic risk score, 0.69 (95% CI, 0.63-0.71). The change in the C statistic when each was added to the PCEs was 0.09 (95% CI, 0.06-0.13) for the coronary artery calcium score, 0.02 (95% CI, 0.00-0.04) for the polygenic risk score, and 0.10 (95% CI, 0.07-0.14) for both. Overall categorical net reclassification improvement was significant when the coronary artery calcium score (0.19; 95% CI, 0.06-0.28) but was not significant when the polygenic risk score (0.04; 95% CI, −0.05 to 0.10) was added to the PCEs. Calibration of the PCEs and models with coronary artery calcium and/or polygenic risk scores was adequate (all χ2<20). Subgroup analysis stratified by the median age demonstrated similar findings. Similar findings were observed for 10-year risk in RS and in longer-term follow-up in MESA (median, 16.0 years).Conclusions and RelevanceIn 2 cohorts of middle-aged to older adults from the US and the Netherlands, the coronary artery calcium score had better discrimination than the polygenic risk score for risk prediction of CHD. In addition, the coronary artery calcium score but not the polygenic risk score significantly improved risk discrimination and risk reclassification for CHD when added to traditional risk factors.
Aims The underlying mechanisms of atrial fibrillation (AF) are largely unknown. Inflammation may underlie atrial remodelling. Autoimmune diseases, related to increased systemic inflammation, may therefore be associated with new-onset AF. Methods and results Participants from the population-based UK Biobank were screened for rheumatic fever, gastrointestinal autoimmune diseases, autoimmune diseases targeting the musculoskeletal system and connective tissues, and neurological autoimmune diseases. Between 2006 and 2022, participants were followed for incident AF. Cox proportional hazards regression analyses were performed to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) to quantify associations. 494 072 participants free from AF were included (median age 58.0 years, 54.8% women). After a median of 12.8 years, 27 194 (5.5%) participants were diagnosed with new-onset AF. Rheumatic fever without heart involvement (HR, 95% CI: 1.47, 1.26–1.72), Crohn’s disease (1.23, 1.05–1.45), ulcerative colitis (1.17, 1.06–1.31), rheumatoid arthritis (1.39, 1.28–1.51), polyarteritis nodosa (1.82, 1.04–3.09), systemic lupus erythematosus (1.82, 1.41–2.35), and systemic sclerosis (2.32, 1.57–3.44) were associated with a larger AF risk. In sex-stratified analyses, rheumatic fever without heart involvement, multiple sclerosis, Crohn’s disease, seropositive rheumatoid arthritis, psoriatic and enteropathic arthropathies, systemic sclerosis and ankylosing spondylitis were associated with larger AF risk in women, whereas only men showed a larger AF risk associated with ulcerative colitis. Conclusions Various autoimmune diseases are associated with new-onset AF, more distinct in women. Our findings elaborate on the pathophysiological differences in autoimmunity and AF risk between men and women.
Background: The link between (mild) aortic valve calcium (AVC) with subclinical cardiac dysfunction and with risk of heart failure (HF) remains unclear. This research aims to determine the association of computed tomography-assessed AVC with echocardiographic measurements of cardiac dysfunction, and with HF in the general population. Methods: We included 2348 participants of the Rotterdam Study cohort (mean age 68.5 years, 52% women), who had AVC measurement between 2003 and 2006, and without history of HF at baseline. Linear regression models were used to explore relationship between AVC and echocardiographic measures at baseline. Participants were followed until December 2016. Fine and Gray subdistribution hazard models were used to assess the association of AVC with incident HF, accounting for death as a competing risk. Results: The presence of AVC or greater AVC were associated with larger mean left ventricular mass and larger mean left atrial size. In particular, AVC ≥800 showed a strong association (body surface area indexed left ventricular mass, β coefficient: 22.01; left atrium diameter, β coefficient: 0.17). During a median of 9.8 years follow-up, 182 incident HF cases were identified. After accounting for death events and adjusting for cardiovascular risk factors, one-unit larger log (AVC+1) was associated with a 10% increase in the subdistribution hazard of HF (subdistribution hazard ratio, 1.10 [95% CI, 1.03–1.18]), but the presence of AVC was not significantly associated with HF risk in fully adjusted models. Compared with the AVC=0, AVC between 300 and 799 (subdistribution hazard ratio, 2.36 [95% CI, 1.32–4.19]) and AVC ≥800 (subdistribution hazard ratio, 2.54 [95% CI, 1.31–4.90]) were associated with a high risk of HF. Conclusions: Presence and high levels of AVC were associated with markers of left ventricular structure, independent of traditional cardiovascular risk factors. Larger computed tomography-assessed AVC is an indicative of increased risk for the development of HF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.