Personality detection aims to identify the personality traits implied in social media posts. The core of this task is to put together information in multiple scattered posts to depict an overall personality profile for each user. Existing approaches either encode each post individually or assemble posts arbitrarily into a new document that can be encoded sequentially or hierarchically. While the first approach ignores the connection between posts, the second tends to introduce unnecessary post-order bias into posts. In this paper, we propose a multi-document Transformer, namely Transformer-MD, to tackle the above issues. When encoding each post, Transformer-MD allows access to information in the other posts of the user through Transformer-XL’s memory tokens which share the same position embedding.Besides, personality is usually defined along different traits and each trait may need to attend to different post information, which has rarely been touched by existing research. To address this concern, we propose a dimension attention mechanism on top of Transformer-MD to obtain trait-specific representations for multi-trait personality detection. We evaluate the proposed model on the Kaggle and Pandora MBTI datasets and the experimental results show that it compares favorably with baseline methods.
Most of the recent work on personality detection from online posts adopts multifarious deep neural networks to represent the posts and builds predictive models in a data-driven manner, without the exploitation of psycholinguistic knowledge that may unveil the connections between one's language usage and his psychological traits. In this paper, we propose a psycholinguistic knowledge-based tripartite graph network, TrigNet, which consists of a tripartite graph network and a BERT-based graph initializer. The graph network injects structural psycholinguistic knowledge from LIWC, a computerized instrument for psycholinguistic analysis, by constructing a heterogeneous tripartite graph. The graph initializer is employed to provide initial embeddings for the graph nodes. To reduce the computational cost in graph learning, we further propose a novel flow graph attention network (GAT) that only transmits messages between neighboring parties in the tripartite graph. Benefiting from the tripartite graph, TrigNet can aggregate post information from a psychological perspective, which is a novel way of exploiting domain knowledge. Extensive experiments on two datasets show that TrigNet outperforms the existing state-of-art model by 3.47 and 2.10 points in average F1. Moreover, the flow GAT reduces the FLOPS and Memory measures by 38% and 32%, respectively, in comparison to the original GAT in our setting.
Fingerprinting is widely and commonly used in the quality control of traditional Chinese medicine (TCM) injections. However, current studies informed that the fingerprint similarity evaluation was less sensitive and easily generated false positive results. For this reason, a novel and practical chromatographic “Fingerprint-ROC-SVM” strategy was established by using KuDieZi (KDZ) injection as a case study in the present article. Firstly, the chromatographic fingerprints of KDZ injection were obtained by UPLC and the common characteristic peaks were identified with UPLC/Q-TOF-MS under the same chromatographic conditions. Then, the receiver operating characteristic (ROC) curve was used to optimize common characteristic peaks by the AUCs value greater than 0.7. Finally, a support vector machine (SVM) model, with the accuracy of 97.06%, was established by the optimized characteristic peaks and applied to monitor the quality of KDZ injection. As a result, the established model could sensitively and accurately distinguish the qualified products (QPs) with the unqualified products (UPs), high-temperature processed samples (HTPs) and high-illumination processed samples (HIPs) of KDZ injection, and the prediction accuracy was 100.00%, 93.75% and 100.00%, respectively. Furthermore, through the comparison with other chemometrics methods, the superiority of the novel analytical strategy was more prominent. It indicated that the novel and practical chromatographic “Fingerprint-ROC-SVM” strategy could be further applied to facilitate the development of the quality analysis of TCM injections.
Existing text-based personality detection research mostly relies on data-driven approaches to implicitly capture personality cues in online posts, lacking the guidance of psychological knowledge. Psychological questionnaire, which contains a series of dedicated questions highly related to personality traits, plays a critical role in self-report personality assessment. We argue that the posts created by a user contain critical contents that could help answer the questions in a questionnaire, resulting in an assessment of his personality by linking the texts and the questionnaire. To this end, we propose a new model named Psychological Questionnaire enhanced Network (PQ-Net) to guide personality detection by tracking critical information in texts with a questionnaire. Specifically, PQ-Net contains two streams: a context stream to encode each piece of text into a contextual text representation, and a questionnaire stream to capture relevant information in the contextual text representation to generate potential answer representations for a questionnaire. The potential answer representations are used to enhance the contextual text representation and to benefit personality prediction. Experimental results on two datasets demonstrate the superiority of PQ-Net in capturing useful cues from the posts for personality detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.