Autophagy and apoptosis play important roles in the development, cellular homeostasis and, especially, oncogenesis of mammals. They may be triggered by common upstream signals, resulting in combined autophagy and apoptosis. In other instances, they may be mutually exclusive. Recent studies have suggested possible molecular mechanisms for crosstalk between autophagy and apoptosis. Bcl‐2 and Bcl‐xL, the well‐characterized apoptosis guards, appear to be important factors in autophagy, inhibiting Beclin 1‐mediated autophagy by binding to Beclin 1. In addition, Beclin 1, Bcl‐2 and Bcl‐xL can cooperate with Atg5 or Ca2+ to regulate both autophagy and apoptosis. Thus, Bcl‐2 and Bcl‐xL represent a molecular link between autophagy and apoptosis. Here, we discuss the possible roles of Bcl‐2 and Bcl‐xL in apoptosis and autophagy, and the crosstalk between them.
Mitochondria are dynamic organelles that undergo continual fusion and fission to maintain their morphology and functions, but the mechanism involved is still not clear. Here, we investigated the effect of mitochondrial oxidative stress triggered by high‐fluence low‐power laser irradiation (HF‐LPLI) on mitochondrial dynamics in human lung adenocarcinoma cells (ASTC‐a‐1) and African green monkey SV40‐transformed kidney fibroblast cells (COS‐7). Upon HF‐LPLI‐triggered oxidative stress, mitochondria displayed a fragmented structure, which was abolished by exposure to dehydroascorbic acid, a reactive oxygen species scavenger, indicating that oxidative stress can induce mitochondrial fragmentation. Further study revealed that HF‐LPLI caused mitochondrial fragmentation by inhibiting fusion and enhancing fission. Mitochondrial translocation of the profission protein dynamin‐related protein 1 (Drp1) was observed following HF‐LPLI, demonstrating apoptosis‐related activation of Drp1. Notably, overexpression of Drp1 increased mitochondrial fragmentation and promoted HF‐LPLI‐induced apoptosis through promoting cytochrome c release and caspase‐9 activation, whereas overexpression of mitofusin 2 (Mfn2), a profusion protein, caused the opposite effects. Also, neither Drp1 overexpression nor Mfn2 overexpression affected mitochondrial reactive oxygen species generation, mitochondrial depolarization, or Bax activation. We conclude that mitochondrial oxidative stress mediated through Drp1 and Mfn2 causes an imbalance in mitochondrial fission–fusion, resulting in mitochondrial fragmentation, which contributes to mitochondrial and cell dysfunction.
Indocyanine green (ICG) is a near-infrared (NIR) imaging agent and is also an ideal light absorber for laser-mediated photothermal therapy. This NIR dye could serve as a basis of a dual-functional probe with integrated optical imaging and photothermal therapy capabilities. However, applications of ICG remain limited by its concentration-dependent aggregation, poor aqueous stability, nonspecific binding to proteins and lack of target specificity. To overcome these limitations, a novel ICG-containing nanostructure is designed utilizing the noncovalent self-assembly chemistry between phospholipid-polyethylene glycol (PL-PEG) and ICG. The interactions between both amphiphilic ICG and PL-PEG were studied using absorption and fluorescence spectroscopy. The properties of ICG-PL-PEG nanoprobe, such as absorption and fluorescence spectra, stability, morphology and size distribution, were also investigated. Two representative targeting molecules, namely, a small molecule, folic acid (FA), and a large protein, integrin α(v)β₃ monoclonal antibody (mAb), were conjugated to the surface of ICG-PL-PEG nanoprobe, displaying the diversity of ligand conjugation. The target specificity was confirmed using three cell lines with different levels of available folate receptors (FRs) or integrin α(v)β₃ expression via laser scanning confocal microscope and flow cytometry. This targeting ICG-PL-PEG nanoprobe could be internalized into targeted cells via ligand-receptor mediated endocytosis pathway. Our in vitro experiments showed that internalized ICG-PL-PEG could be used for cell imaging and selective photothermal cell destruction. These results represent the first demonstration of the dual functionality of ICG-containing nanostructure for targeted optical imaging and photothermal therapy of cancerous cells. This novel ICG-PL-PEG nanostructure, when conjugated with other therapeutic and imaging agents, could become a multifunctional probe for cancer diagnosis and treatment.
Single-walled carbon nanotubes (SWNTs) have a high optical absorbance in the near-infrared (NIR) region. In this special optical window, biological systems are known to be highly transparent. The optical properties of SWNTs provide an opportunity for selective photothermal therapy for cancer treatment. Specifically, CoMoCAT® nanotubes with a uniform size (about 0.81 nm) and a narrow absorption peak at 980 nm are ideal candidates for such a novel approach. Here, CoMoCAT® SWNTs are conjugated to folate, which can bind specifically to the surface of the folate receptor tumor markers. Folate-SWNT (FA-SWNT) targeted tumor cells were irradiated by a 980-nm laser. In our in vitro and in vivo experiments, FA-SWNT effectively enhanced the photothermal destruction on tumor cells and noticeably spared the photothermal destruction for nontargeted normal cells. Thus, SWNTs, combined with suitable tumor markers, can be used as novel nanomaterials for selective photothermal therapy for cancer treatment.
Combined phototherapy and immunotherapy demonstrates strong potential in the treatment of metastatic cancers. An upconversion nanoparticle (UCNP) based antigen‐capturing nanoplatform is designed to synergize phototherapies and immunotherapy. In particular, this nanoplatform is constructed via self‐assembly of DSPE‐PEG‐maleimide and indocyanine green (ICG) onto UCNPs, followed by loading of the photosensitizer rose bengal (RB). ICG significantly enhances the RB‐based photodynamic therapy efficiency of UCNP/ICG/RB‐mal upon activation by a near‐infrared (NIR) laser, simultaneously achieving selective photothermal therapy. Most importantly, tumor‐derived protein antigens, arising from phototherapy‐treated tumor cells, can be captured and retained in situ, due to the functionality of maleimide, which further enhance the tumor antigen uptake and presentation by antigen‐presenting cells. The synergized photothermal, photodynamic, and immunological effects using light‐activated UCNP/ICG/RB‐mal induces a tumor‐specific immune response. In the experiments, intratumoral administration of UCNP/ICG/RB‐mal, followed by noninvasive irradiation with an NIR laser, destroys primary tumors and inhibits untreated distant tumors, using a poorly immunogenic, highly metastatic 4T1 mammary tumor model. With the simultaneous use of anti‐CTLA‐4, about 84% of the treated tumor‐bearing mice achieve long‐term survival and 34% of mice develop tumor‐specific immunity. Overall, this antigen‐capturing nanoplatform provides a promising approach for the treatment of metastatic cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.