In recent years, circular RNAs (circRNAs) have been shown to have critical regulatory roles in the resistance to anti-cancer drugs. However, the contributions of circRNAs to sorafenib resistance in hepatocellular carcinoma (HCC) remain largely unknown. The present study aims to explore the involvement of circFN1 in sorafenib resistance and how circFN1 is associated with the miR-1205/E2F1 pathway, which have been demonstrated to mediate this resistance in HCC cells. We investigated the expression of circRNAs in five paired sorafenib-sensitive HepG2 cells and sorafenib-resistant (SR)-HepG2 cells by microarray analysis. The quantitative real-time PCR analysis was used to investigate the expression pattern of circFN1 in HCC patient tissues and cell lines. Then, the effects of circFN1 on sorafenib resistance, cell proliferation, and apoptosis were assessed in HCC in vitro and in vivo . In this study, circFN1 was observed to be upregulated in HCC patient tissues and cell lines. Overexpression of circFN1 in HCC was significantly correlated with aggressive characteristics and served as an independent risk factor for overall survival in patients with HCC. Our in vivo and in vitro data indicated that inhibition of circFN1 enhances the sorafenib sensitivity of HCC cells. Mechanistically, we found that circFN1 could promote the expression of E2F1 by sponging miR-1205. In summary, our study demonstrated that circFN1 contributes to sorafenib resistance by regulating the miR-1205/E2F1 signaling pathway. These results indicate that circFN1 may represent a potentially valuable target for overcoming sorafenib resistance for HCC.
Background Dysregulation of long non-coding RNAs (lncRNAs) results in development of human diseases including hepatocellular carcinoma (HCC). Although several HCC related lncRNAs have been reported, the biological functions of many lncRNAs during the development of HCC remains unknown. Methods The expression of ST8SIA6-AS1 was studied by realtime PCR (RT-qPCR) and bioinformatic analysis. The biological functions of ST8SIA6-AS1 was examined by CCK-8 assay and flow cytometry analysis. The target of ST8SIA6-AS1 was analyzed by bioinformatic analysis and validated by dual luciferase reporter assay, western blotting and RT-qPCR. Results In this study we demonstrated that ST8SIA6-AS1 was an upregulated lncRNA in hepatocellular carcinoma. SiRNA-mediated knockdown of ST8SIA6-AS1 repressed cell proliferation and induced cell apoptosis in HCC cells. Bioinformatic analysis and RT-qPCR further showed that ST8SIA6-AS1 mainly located in cytoplasm. Dual luciferase reporter assay further revealed that ST8SIA6-AS1 interacted with miR-4656 in HCC cells. In addition, HDAC11 was identified as a target gene in HCC cells and ST8SIA6-AS1 could upregulate HDAC11 via sponging miR-4656. Transfection of recombinant HDAC11 partially rescued the inhibition of cell proliferation and increase of cell apoptosis inducing by knockdown of ST8SIA6-AS1. Conclusion In conclusion, our findings suggested that ST8SIA6-AS1 was a novel upregulated lncRNA in HCC and could facilitate cell proliferation and resistance to cell apoptosis via sponging miR-4656 and elevation of HDAC11, which might be a promising biomarker for patients with HCC.
Background: Thousands of long non-coding RNAs (lncRNAs) have been functionally verified as crucial regulators of physiological processes and disease progressions, yet their roles in hepatocellular carcinoma (HCC) have not been clearly illuminated. Methods: We analyzed the expression of lncRNA-SNHG14 in TCGA data via bioinformatic analysis and detected its expression in HCC specimens by reverse transcriptionquantitative polymerase chain reaction (RT-qPCR). Loss-of-function experiments were used to study the biological function of SNHG14 in HCC cells. RT-qPCR, Western blotting and dual-luciferase reporter assay were carried out to investigate the molecular mechanism of SNHG14 in HCC. Results: The upregulation of lncRNA-SNHG14 was observed in HCC tissues compared with normal tissues via RT-qPCR and bioinformatic analysis of TCGA data. Silencing of SNHG14 inhibited cell proliferation and induced cell apoptosis in HCC cells. microRNA-217 (miR-217), the tumor-suppressive miRNA in HCC, was predicted and confirmed as a miRNA sponged by SNHG14 in HCC cells. Via downregulation of miR-217, SNHG14 increased the expression of several miR-217-related oncogenes and subsequently activated oncogene-related signaling pathways in HCC cells. In addition, inhibition of miR-217 reversed SNHG14 silencing induced decrease of cell proliferation and increase of cell apoptosis. Their association was verified in the published microarray dataset and the collected HCC samples. Conclusion: In summary, SNHG14 is involved in the development of HCC via sponging miR-217 and it may be a biomarker for patients with HCC.
BackgroundColorectal cancer (CRC) patients with BRAF mutation have very poor prognosis. It is urgent to search for prognostic factors of BRAF mutant CRC. RNF43 is a ENF ubiquitin ligase of Wnt signaling. Mutation of RNF43 has been observed frequently in various types of human cancers. However, few studies have evaluated the role of RNF43 in CRC. The present study aimed to explore the impact of RNF43 mutations on molecular characteristics and prognosis in BRAF mutant CRC.MethodsSamples of 261 CRC patients with BRAF mutation were retrospectively analyzed. Tumor tissue and matched peripheral blood samples were collected and subjected to targeted sequencing with a panel of 1021 cancer-related genes. The association of molecular characteristics and survival in patients were then analyzed. 358 CRC patients with BRAF mutation from the cBioPortal dataset were used for further confirmation.ResultsThis study was inspired by a CRC patient with BRAF V600E and RNF43 co-mutation, who achieved a best remission of 70% and a progression free survival (PFS) of 13 months. Genomic analysis indicated that RNF43 mutation affected the genomic characteristics of patients with BRAF mutation, including microsatellite instability (MSI), tumor mutation burden (TMB) and the proportion of common gene mutations. Survival analysis showed that RNF43 mutation was a predictive biomarker for better PFS and OS in BRAF mutant CRC.ConclusionCollectively, we identified that RNF43 mutations were correlated with favorable genomic features, resulting in a better clinical outcome for BRAF mutant CRC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.