Dysregulation of transcription factors (TFs) is associated with tumor progression, but little is known about TF expression patterns in the context of gastric cancer (GC) metastasis. Using array-based profile analysis, we found that 22 TFs showed differential activities between GC cell lines with low- and high-metastatic potential. Of this group of TFs, serum response factor (SRF) was significantly upregulated in metastatic GC cells. SRF expression was frequently elevated in a panel of metastatic GC cells and tissues, and high-level expression of SRF was significantly associated with a more aggressive phenotype and poor prognosis in patients with GC. In GC cell lines, overexpression of SRF potently promoted cell migration and invasion in vitro as well as the formation of intrahepatic and pulmonary metastases in vivo, whereas loss of SRF inhibited GC cell invasion and metastasis. We also performed a microRNA microarray to screen for transcriptional targets of SRF and found that SRF transactivates miR-199a-5p and miR-199a-3p by directly binding to their promoters. We further determined that overexpression of miR-199a-5p, but not miR-199a-3p, increased GC cell invasion and metastasis. In contrast, inhibition of miR-199a-5p impaired the metastatic potential of GC cells in vitro and in vivo, and E-cadherin was identified as a direct and functional target of miR-199a-5p in GC cells. Specifically, our results showed that SRF promotes GC metastasis and the epithelial to mesenchymal transition (EMT) though miR-199a-5p-mediated downregulation of E-cadherin. The present study thus provides insight into the specific biological behavior of SRF in GC metastasis. As increased activity of the SRF/miR-199a-5p/E-cadherin pathway appears to promote GC cell EMT and metastasis, these regulators may therefore be developed as therapeutic targets or biomarkers for GC progression.
Background Microglia can not only detrimentally augment secondary injury but also potentially promote recovery. However, the mechanism underlying the regulation of microglial phenotypes after stroke remains unclear. Methods Mice were subjected to middle cerebral artery occlusion for 60 min. At 3 days after reperfusion, the effects of activation and suppression of triggering receptor expressed on myeloid cells 2 on immunocyte phenotypes (n = 5), neurobehavioral scores (n = 7), infarct volumes (n = 8), and neuronal apoptosis (n = 7) were analyzed. In vitro, cultured microglia were exposed to oxygen–glucose deprivation for 4 h. Inflammatory cytokines, cellular viability (n = 8), neuronal apoptosis (n = 7), and triggering receptor expressed on myeloid cells 2 expression (n = 5) were evaluated in the presence or absence of triggering receptor expressed on myeloid cell-specific small interfering RNA or triggering receptor expressed on myeloid cells 2 overexpression lentivirus. Results Triggering receptor expressed on myeloid cells 2 expression in the ischemic penumbra peaked at 3 days after ischemia–reperfusion injury (4.4 ± 0.1-fold, P = 0.0004) and was enhanced in interleukin-4/interleukin-13–treated microglia in vitro (1.7 ± 0.2-fold, P = 0.0119). After oxygen–glucose deprivation, triggering receptor expressed on myeloid cells 2 conferred neuroprotection by regulating the phenotypic conversion of microglia and inflammatory cytokine release. Intraperitoneal administration of triggering receptor expressed on myeloid cells 2 agonist heat shock protein 60 or unilateral delivery of a recombinant triggering receptor expressed on myeloid cells 2 lentivirus into the cerebral ventricle induced a significant neuroprotective effect in mice (apoptotic neurons decreased to 31.3 ± 7.6%; infarct volume decreased to 44.9 ± 5.3%). All values are presented as the mean ± SD. Conclusions Activation or up-regulation of triggering receptor expressed on myeloid cells 2 promoted the phenotypic conversion of microglia and decreased the number of apoptotic neurons. Our study suggests that triggering receptor expressed on myeloid cells 2 is a novel regulator of microglial phenotypes and may be a potential therapeutic target for stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.