Metastasis is a major clinical obstacle in the treatment of gastric cancer (GC) and it accounts for the majority of cancer-related mortality. MicroRNAs have recently emerged as regulators of metastasis by acting on multiple signaling pathways. In this study, we found that miR-7 is significantly downregulated in highly metastatic GC cell lines and metastatic tissues. Both gain-of-function and loss-of-function experiments showed that increased miR-7 expression significantly reduced GC cell migration and invasion, whereas decreased miR-7 expression dramatically enhanced cell migration and invasion. In vivo metastasis assays also demonstrated that overexpression of miR-7 markedly inhibited GC metastasis. Moreover, the insulin-like growth factor-1 receptor (IGF1R) oncogene, which is often mutated or amplified in human cancers and functions as an important regulator of cell growth and tumor invasion, was identified as a direct target of miR-7. Silencing of IGF1R using small interefering RNA (siRNA) recapitulated the anti-metastatic function of miR-7, whereas restoring the IGF1R expression attenuated the function of miR-7 in GC cells. Furthermore, we found that suppression of Snail by miR-7, through targeting IGF1R, increased E-cadherin expression and partially reversed the epithelial-mesenchymal transition (EMT). Finally, analyses of miR-7 and IGF1R levels in human primary GC with matched lymph node metastasis tissue arrays revealed that miR-7 is inversely correlated with IGF1R expression. The present study provides insight into the specific biological behavior of miR-7 in EMT and tumor metastasis. Targeting this novel miR-7/IGF1R/Snail axis would be helpful as a therapeutic approach to block GC metastasis.
Epithelial-to-mesenchymal transition (EMT) induced by chronic hypoxia is one of the critical causes of renal fibrosis. Twist, a basic helix-loop-helix transcription factor, is believed to be important in promoting EMT. We found that the expression of Twist was increased in human tubule cell lines (HK-2 and HKC) grown under hypoxic conditions. This was accompanied by reduced expression of the epithelial markers E-cadherin and ZO-1 and enhanced expression of the mesenchymal markers vimentin and alpha-smooth muscle actin. When Twist was overexpressed in these cells it induced a mesenchymal phenotype, whereas its knockdown by short interfering RNA (siRNA) effectively reversed hypoxia-induced EMT. We showed that transfection with siRNA to hypoxia-inducible factor-1alpha (HIF-1alpha), another basic helix-loop-helix transcription factor, reduced Twist expression. Twist promoters contain HIF1-alpha-binding sites and transfection of reporter constructs using the promoter showed increased transcription in cells subjected to hypoxia. Electrophoretic mobility shift and chromatin immunoprecipitation assays identified the presence of a functional HIF-1alpha-binding site within the proximal Twist gene promoter. In an in vivo assay using the rat remnant kidney we found that both Twist and HIF-1alpha were overexpressed in tubular epithelial cells showing EMT. These studies suggest that HIF-1alpha induces Twist expression in hypoxic tubular cells and that this plays a role in EMT during renal fibrogenesis.
BackgroundMicroRNAs (miRNAs) are important regulators that play key roles in tumorigenesis and tumor progression. A previous report has shown that let-7 family members can act as tumor suppressors in many cancers. Through miRNA array, we found that let-7f was downregulated in the highly metastatic potential gastric cancer cell lines GC9811-P and SGC7901-M, when compared with their parental cell lines, GC9811 and SGC7901-NM; however, the mechanism was not clear. In this study, we investigate whether let-7f acts as a tumor suppressor to inhibit invasion and metastasis in gastric cancers.Methodology/PrincipalReal-time PCR showed decreased levels of let-7f expression in metastatic gastric cancer tissues and cell lines that are potentially highly metastatic. Cell invasion and migration were significantly impaired in GC9811-P and SGC7901-M cell lines after transfection with let-7f-mimics. Nude mice with xenograft models of gastric cancer confirmed that let-7f could inhibit gastric cancer metastasis in vivo after transfection by the lentivirus pGCsil-GFP- let-7f. Luciferase reporter assays demonstrated that let-7f directly binds to the 3′UTR of MYH9, which codes for myosin IIA, and real-time PCR and Western blotting further indicated that let-7f downregulated the expression of myosin IIA at the mRNA and protein levels.Conclusions/SignificanceOur study demonstrated that overexpression of let-7f in gastric cancer could inhibit invasion and migration of gastric cancer cells through directly targeting the tumor metastasis-associated gene MYH9. These data suggest that let-7f may be a novel therapeutic candidate for gastric cancer, given its ability to reduce cell invasion and metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.