De novo and acquired resistance, largely attributed to genetic alterations, are barriers to effective anti-EGFR therapy. We generated cetuximab-resistant cells following prolonged cetuximab exposure to cetuximab-sensitive colorectal cancer cells in three-dimensional culture. Through whole exome sequencing and transcriptional profiling, we found overexpression of lncRNA MIR100HG and two embedded miRNAs, miR-100 and miR-125b, in the absence of known genetic events linked to cetuximab resistance. MIR100HG and miR-100/125b overexpression was also observed in cetuximab-resistant colorectal cancer and head and neck squamous cell cancer cell lines and in tumors from colorectal cancer patients that progressed on cetuximab. miR-100/125b coordinately represses five Wnt/β-catenin negative regulators, resulting in increased Wnt signaling, and Wnt inhibition in cetuximab-resistant cells restored cetuximab responsiveness. We describe a double-negative feedback loop between MIR100HG and GATA6, whereby GATA6 represses MIR100HG, but this repression is relieved by miR-125b targeting of GATA6. These studies identify a clinically actionable, epigenetic cause of cetuximab resistance.
Metastasis is a major clinical obstacle in the treatment of gastric cancer (GC) and it accounts for the majority of cancer-related mortality. MicroRNAs have recently emerged as regulators of metastasis by acting on multiple signaling pathways. In this study, we found that miR-7 is significantly downregulated in highly metastatic GC cell lines and metastatic tissues. Both gain-of-function and loss-of-function experiments showed that increased miR-7 expression significantly reduced GC cell migration and invasion, whereas decreased miR-7 expression dramatically enhanced cell migration and invasion. In vivo metastasis assays also demonstrated that overexpression of miR-7 markedly inhibited GC metastasis. Moreover, the insulin-like growth factor-1 receptor (IGF1R) oncogene, which is often mutated or amplified in human cancers and functions as an important regulator of cell growth and tumor invasion, was identified as a direct target of miR-7. Silencing of IGF1R using small interefering RNA (siRNA) recapitulated the anti-metastatic function of miR-7, whereas restoring the IGF1R expression attenuated the function of miR-7 in GC cells. Furthermore, we found that suppression of Snail by miR-7, through targeting IGF1R, increased E-cadherin expression and partially reversed the epithelial-mesenchymal transition (EMT). Finally, analyses of miR-7 and IGF1R levels in human primary GC with matched lymph node metastasis tissue arrays revealed that miR-7 is inversely correlated with IGF1R expression. The present study provides insight into the specific biological behavior of miR-7 in EMT and tumor metastasis. Targeting this novel miR-7/IGF1R/Snail axis would be helpful as a therapeutic approach to block GC metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.