As a traditional herbal medicine, the fruits of Psoralea corylifolia L. (Fructus Psoraleae (FP)) have been widely used for the treatment of various skin diseases for hundred years. Recently, the emerging FPinduced toxic effects, especially hepatotoxicity, in clinic are getting the public's attention. However, its exact toxic components and mechanisms underlying remain unclear. Bavachin, one of flavonoids in FP, has been documented as a hepatotoxic substance, and the present study aimed to determine the toxicity caused by bavachin and the possible toxic mechanisms involved using human hepatocellular carcinoma (HepG2) cells. Our results showed that bavachin could significantly inhibited cell proliferation and trigger the endoplasmic reticulum (ER) stress in a dose dependent manner. Downregulating ER stress using tauroursodeoxycholic acid (TUDCA) obvious attenuated bavachin-triggerd cell apoptosis. Then, small interfering RNA (siRNA) knock-down of Mitofusion2 (Mfn2) resulted in a remarkable aggravation of ER stress through the inhibition of the phosphorylation of protein kinase B (Akt). Additionally, suppression of reactive oxygen species (ROS) by ROS Scavenger (N-acetyl-l-cystein (NAC)) also reduced bavachin-induced ER stress. Taken together, our study demonstrated that bavachin-induced ER stress caused cell apoptosis by Mfn2-Akt pathway, and that ROS may participate upstream in this mechanism. Here, we not only provide a new understanding of ROS/ Mfn2/Akt pathway in bavachin-induced cytotoxicity via the ER stress, but also identify a new specific intervention to prevent FP-induced hepatotoxicity in the future.
A new type of mixed lanthanides-immobilized (Tb(3+) , Tm(3+) , Ho(3+) , Lu(3+) ) magnetic nanoparticles, Fe3 O4 @TCPP-DOTA-M(3+) , was prepared with a particle size of approximately 30 nm. A model protein, α-casein, and a protein mixture of α-casein and BSA (1:100) were first used to test the phosphopeptide enrichment efficiency of the newly developed magnetic nanoparticles. For the model protein α-casein, 19 phosphopeptides were identified with the newly developed materials. Even in the tryptic digest of α-casein and BSA (1:100), 16 phosphopeptides were easily detected, suggesting that the novel materials possess high selectivity in phosphopeptide enrichment. To evaluate the phosphopeptide enrichment efficiency in a real biological sample, the materials were used to capture phosphopeptides in the tryptic digests of an extract of HeLa cells. In total, 9048 phosphopeptides corresponding to 2103 phosphoproteins were identified in a single mass spectrometric analysis, indicating the great potential of the new materials for practical applications. Compared with metal oxide-based enrichment methods, the newly developed materials are convenient to prepare and easy to handle, and they save time in the phosphopeptide enrichment procedure, making these materials a good choice for highly selective and sensitive phosphopeptide enrichment in future phosphoproteome analyses.
Currently, the separation targets of preparative electrophoresis range from milligrams to micrograms of proteins. However, most commercially available preparative electrophoretic instruments function at the milligram level. Although some preparative electrophoretic apparatuses operated at the microgram level, the fractionation results are often unsatisfying because they suffer from low resolution, poor recovery, or a long fractionation time. To address these issues, we developed a novel microscale preparative electrophoresis system that consists of a separation apparatus and an elution apparatus. Protein samples are first loaded onto the separation apparatus and separated over the gel according to the molecular weight of each protein. Then the separation gel is transferred to the elution apparatus and the proteins on the gel are eluted through the thickness of the gel. This system offers the following advantages: (1) high resolution: almost no overlap between the adjacent fractions; (2) a short recovery time: fractionation was performed in 2 hours including separation in 100 min and elution in 20 min and (3) high recovery: recovery was as high as 91.8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.