BackgroundGut microbiota has been suggested to play a role in almost all major diseases including cardio‐ and cerebrovascular diseases. A possible mechanism is the transformation of dietary choline and l‐carnitine into trimethylamine by gut bacteria. This metabolite is further oxidized into trimethylamine‐N‐oxide (TMAO) in liver and promotes atherogenesis. Nevertheless, little is known about gut microbial diversity and blood TMAO levels in stroke patients.Methods and ResultsWe performed a case‐control study of patients with large‐artery atherosclerotic ischemic stroke and transient ischemic attack. TMAO was determined with liquid chromatography tandem mass spectrometry. Gut microbiome was profiled using Illumina sequencing of the 16S rRNA V4 tag. Within the asymptomatic control group, participants with and without carotid atherosclerotic plaques showed similar levels of TMAO without a significant difference in gut microbiota; however, the gut microbiome of stroke and transient ischemic attack patients was clearly different from that of the asymptomatic group. Stroke and transient ischemic attack patients had more opportunistic pathogens, such as Enterobacter, Megasphaera, Oscillibacter, and Desulfovibrio, and fewer commensal or beneficial genera including Bacteroides, Prevotella, and Faecalibacterium. This dysbiosis was correlated with the severity of the disease. The TMAO level in the stroke and transient ischemic attack patients was significantly lower, rather than higher, than that of the asymptomatic group.ConclusionsParticipants with asymptomatic atherosclerosis did not exhibit an obvious change in gut microbiota and blood TMAO levels; however, stroke and transient ischemic attack patients showed significant dysbiosis of the gut microbiota, and their blood TMAO levels were decreased.
At present, the pathophysiology of autism spectrum disorder (ASD) remains unclear. Increasing evidence suggested that gut microbiota plays a critical role in gastrointestinal symptoms and behavioral impairment in ASD patients. The primary aim of this systematic review is to investigate potential evidence for the characteristic dysbiosis of gut microbiota in ASD patients compared with healthy controls (HCs). The MEDLINE, EMBASE, Web of Science and Scopus were systematically searched before March 2018. Human studies that compared the composition of gut microbiota in ASD patients and HCs using culture-independent techniques were included. Independent data extraction and quality assessment of studies were conducted according to PRISMA statement and Newcastle-Ottawa Scale. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used to infer biological functional changes of the shifted microbiota with the available data in four studies. Sixteen studies with a total sample size of 381 ASD patients and 283 HCs were included in this systematic review. The quality of the studies was evaluated as medium to high. The overall changing of gut bacterial community in terms of β-diversity was consistently observed in ASD patients compared with HCs. Furthermore, Bifidobacterium, Blautia, Dialister, Prevotella, Veillonella, and Turicibacter were consistently decreased, while Lactobacillus, Bacteroides, Desulfovibrio, and Clostridium were increased in patients with ASD relative to HCs in certain studies. This systematic review demonstrated significant alterations of gut microbiota in ASD patients compared with HCs, strengthen the evidence that dysbiosis of gut microbiota may correlate with behavioral abnormality in ASD patients. However, results of inconsistent changing also existed and further big-sampled well-designed studies are needed. Generally, as a potential mediator of risk factors, the gut microbiota could be a novel target for ASD patients in the future.
The gut microbiota has been implicated in glucose intolerance and its progression towards type-2 diabetes mellitus (T2DM). Relevant randomized clinical trial with prebiotic intervention was inadequate. We sought to evaluate the impact of fructooligosaccharides (FOS) and galactooligosaccharides (GOS) on glycemia during oral glucose tolerance test (OGTT) and intestinal microbiota. A randomized double-blind cross-over study was performed with 35 adults treated with FOS and GOS for 14 days (16 g/day). Faeces sampling, OGTT and anthropometric parameters were performed. Short-term intake of high-dose prebiotics had adverse effect on glucose metabolism, as in FOS intervention demonstrated by OGTT (P < 0.001), and in GOS intervention demonstrated by fasting glucose (P < 0.05). A significant increase in the relative abundance of Bifidobacterium was observed both in FOS and GOS group, while the butyrate-producing bacteria like Phascolarctobacterium in FOS group and Ruminococcus in GOS group were decreased. A random forest model using the initial microbiota was developed to predict OGTT levels after prebiotic intervention with relative success (R = 0.726). Our study alerted even though FOS and GOS increased Bifidobacterium, they might have adverse effect on glucose metabolism by reducing butyrate-producing microbes. Individualized prebiotics intervention based on gut microbiome needs to be evaluated in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.