Driver fatigue is attracting more and more attention, as it is the main cause of traffic accidents, which bring great harm to society and families. This paper proposes to use deep convolutional neural networks, and deep residual learning, to predict the mental states of drivers from electroencephalography (EEG) signals. Accordingly we have developed two mental state classification models called EEG-Conv and EEG-Conv-R. Tested on intra-and inter-subject, our results show that both models outperform the traditional LSTM-and SVM-based classifiers. Our major findings include (1) Both EEG-Conv and EEG-Conv-R yield very good classification performance for mental state prediction; (2) EEG-Conv-R is more suitable for inter-subject mental state prediction; (3) EEG-Conv-R converges more quickly than EEG-Conv. In summary, our proposed classifiers have better predictive power and are promising for application in practical brain-computer interaction .
The necessary step in the diagnosis of leukemia by the attending physician is to classify the white blood cells in the bone marrow, which requires the attending physician to have a wealth of clinical experience. Now the deep learning is very suitable for the study of image recognition classification, and the effect is not good enough to directly use some famous convolution neural network (CNN) models, such as AlexNet model, GoogleNet model, and VGGFace model. In this paper, we construct a new CNN model called WBCNet model that can fully extract features of the microscopic white blood cell image by combining batch normalization algorithm, residual convolution architecture, and improved activation function. WBCNet model has 33 layers of network architecture, whose speed has greatly been improved compared with the traditional CNN model in training period, and it can quickly identify the category of white blood cell images. The accuracy rate is 77.65% for Top-1 and 98.65% for Top-5 on the training set, while 83% for Top-1 on the test set. This study can help doctors diagnose leukemia, and reduce misdiagnosis rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.