Polarization management is very important for photonic integrated circuits (PICs) and their applications. Due to geometrical anisotropy and fabrication inaccuracies, the characteristics of the guided transverse‐electrical (TE) and transverse‐magnetic (TM) modes are generally different. Polarization‐dependent dispersion and polarization‐dependent loss are such manifestations in PICs. These issues become more severe in high index contrast structures such as nanophotonic waveguides made of silicon‐on‐insulator (SOI), which has been regarded as a good platform for optical interconnects because of the compatibility with CMOS processing. Recently, polarization division multiplexing (PDM) with coherent detection using silicon photonics has also attracted much attention. This trend further highlights the importance of polarization management in silicon PICs. The authors review their work on polarization management for silicon PICs using the polarization independence and polarization diversity methods. Polarization issues and solutions in PICs made of SOI nanowires and ridge waveguides are discussed.
A fast silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm is proposed and realized by introducing an ultra-thin wide silicon-on-insulator ridge core region with a narrow metal cap. With this novel design, the light absorption in graphene is enhanced while the metal absorption loss is reduced simultaneously, which helps greatly improve the responsivity as well as shorten the absorption region for achieving fast responses. Furthermore, metal-graphenemetal sandwiched electrodes are introduced to reduce the metal-graphene contact resistance, which is also helpful for improving the response speed. When the photodetector operates at 2 μm, the measured 3dB-bandwidth is >20 GHz (which is limited by the experimental setup) while the 3dB-bandwith calculated from the equivalent circuit with the parameters extracted from the measured S 11 is as high as ~100 GHz. To the best of our knowledge, it is the first time to report the waveguide photodetector at 2 μm with a 3dB-bandwidth over 20 GHz. Besides, the present photodetectors also work very well at 1.55 μm. The measured responsivity is about 0.4 A/W under a bias voltage of −0.3 V for an optical power of 0.16 mW, while the measured 3dB-bandwidth is over 40 GHz (limited by the test setup) and the 3 dB-bandwidth estimated from the equivalent circuit is also as high as ~100 GHz, which is one of the best results reported for silicon-graphene photodetectors at 1.55 μm.
A dual-polarization 10-channel mode (de)multiplexer is proposed and realized with cascaded dual-core adiabatic tapers on a silicon-on-insulator (SOI) platform. The mode demultiplexer has a 2.3 μm-wide multimode bus waveguide, which supports six mode-channels of TE polarization and four mode-channels of TM polarization. These ten mode-channels are (de)multiplexed with five cascaded dual-core adiabatic tapers based on SOI nanowires. The widths for these dual-cores are chosen optimally according to the dispersion curves of the dual-core SOI nanowire, so that the desired highest-order modes of TE-and TM-polarizations are extracted simultaneously. These two extracted mode-channels are coupled very efficiently to the fundamental modes of TE-and TM-polarizations (TE 0 and TM 0 ) in the narrow waveguide, respectively, which are then separated by using a polarization beam splitter based on bent directional couplers. A chip consisting of a pair of 10-channel mode (de)multiplexers is fabricated and then tested with data transmission of 30Gbps/channel. The measurement results show that all TM-and TE mode-channels have low crosstalks (-15ß-25 dB) and low excess losses (0.2ß1.8 dB) over a broad wavelength band of ß90 nm, which makes it WDM (wavelength-division-multiplexing)-compatible and thus suitable for high capacity on-chip optical interconnects.
Silicon photonics is being extended from the near-infrared window of 1.3-1.5 µm for optical fiber communications to the mid-infrared (mid-IR) wavelength-band of 2 µm or longer for satisfying the increasing demands in many applications. Mid-IR waveguide photodetectors on silicon have attracted intensive attention as one of the indispensable elements for various photonic systems. However, when combining traditional semiconductor materials with silicon, there are some challenges due to lattice mismatch and thermal expansion mismatch. As an alternative, two-dimensional (2D) materials provide a new and promising option for enabling active photonic devices on silicon. Here black-phosphorus (BP) thin films with optimized medium thicknesses (40 nm) are introduced as the active material for light absorption and silicon/BP hybrid ridge waveguide photodetectors at 2 µm are demonstrated with a high responsivity of 306.7 mA W −1 at a low bias voltage of 0.4 V. The 3 dB-bandwidth is up to 1.33 GHz and an experiment of a 4.0 Gbit s −1 data receiving is also demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.