In recent years, the discovery of ovarian germ stem cells (OGSCs) has provided a new research direction for the treatment of female infertility. The ovarian microenvironment affects the proliferation and differentiation of OGSCs, and immune cells and related cytokines are important components of the microenvironment. However, whether improving the ovarian microenvironment can regulate the proliferation of OGSCs and remodel ovarian function has not been reported. In this study, we chelated chito-oligosaccharide (COS) with fluorescein isothiocyanate (FITC) to track the distribution of COS in the body. COS was given to mice through the best route of administration, and the changes in ovarian and immune function were detected using assays of organ index, follicle counting, serum estrogen (E2) and anti-Mullerian hormone (AMH) levels, and the expression of IL-2 and TNF-α in the ovaries. We found that COS significantly increased the organ index of the ovary and immune organs, reduced the rate of follicular atresia, increased the levels of E2 and AMH hormones, and increased the protein expression of IL-2 and TNF-α in the ovary. Then, COS and OGSCs were co-cultured to observe the combination of COS and OGSCs, and measure the survival rate of OGSCs. With increasing time, the fluorescence intensity of cells gradually increased, and the cytokines IL-2 and TNF-α significantly promoted the proliferation of OGSCs. In conclusion, COS could significantly improve the ovarian and immune function of chemotherapy model mice, and improve the survival rate of OGSCs, which provided a preliminary blueprint for further exploring the mechanism of COS in protecting ovarian function.
In recent years, the discovery of ovarian germ stem cells (OGSCs) has provided a new research direction for the treatment of ovarian failure. The ovarian microenvironment affects the proliferation and differentiation of OGSCs, and immune cells and related cytokines are important components of the microenvironment. However, whether improving the ovarian microenvironment can regulate the proliferation of OGSCs and remodel ovarian function has not been reported. In this study, we linked chitosan oligosaccharide(COS) with fluorescein isothiocyanate (FITC) to select the best route of administration. COS was given to mice through the best route of administration, and the changes in ovarian and immune function were observed using assays of organ index, follicular growth, serum estrogen (E 2 ) and anti-Mullerian hormone (AMH) levels, and the expression of IL-2 and TNF-α in the ovaries. COS significantly increased the weight of the ovary and immune organs, reduced the rate of follicular atresia, increased the levels of E 2 and AMH hormones, and increased the protein expression of IL-2 and TNF-α in the ovary. Then, COS and OGSCs were cocultured to observe the entry of COS into OGSCs and to measure the survival rate of OGSCs. With increasing time, COS gradually entered the cell, and the cytokines IL-2 and TNF-α significantly promoted OGSCs promotion. In conclusion, COS significantly improved the ovarian and immune function of mice with pathological ovarian aging, and improved the survival rate of OGSCs, which provided a preliminary blueprint for further exploring the mechanism of COS in anti ovarian aging.
Nonobstructive azoospermia (NOA) is one of the most important causes of male infertility, accounting for 10-15% of infertile men worldwide. Among these, more than 70% of cases are idiopathic NOA (iNOA), whose pathogenesis and molecular basis remain unknown. This work profiles 3696 human testicular single-cell transcriptomes from 17 iNOA patients, which are classified into four classes with different arrest periods and variable cell proportions based on the gene expression patterns and pathological features. Genes related to the cell cycle, energy production, and gamete generation show obvious abnormalities in iNOA germ cells. This work identifies several candidate causal genes for iNOA, including CD164, LELP1, and TEX38, which are significantly downregulated in iNOA germ cells. Notably, CD164 knockdown promotes apoptosis in spermatogonia. Cellular communications between spermatogonial stem cells and Sertoli cells are disturbed in iNOA patients. Moreover, BOD1L2, C1orf194, and KRTCAP2 are found to indicate testicular spermatogenic capacity in a variety of testicular diseases, such as Y-chromosome microdeletions and Klinefelter syndrome. In general, this study analyzes the pathogenesis of iNOA from the perspective of germ cell development, transcription factor (TF) regulatory networks, as well as germ cell and somatic cell interactions, which provides new ideas for clinical diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.