The BeiDou Navigation Satellite System (BDS) has completed third phase construction and currently provides global services, with a mixed constellation of BDS-2 and BDS-3. The newly launched BDS-3 satellites are equipped with rubidium and passive hydrogen maser (PHM) atomic clocks. The performance of atomic clocks is one of the cores of satellite navigation system, which will affect the performance of positioning, navigation and timing (PNT). In this paper, we systematically analyze the characteristics of BDS-2 and BDS-3 atomic clocks, based on more than one year of precise satellite clock products and broadcast ephemeris. Firstly, the results of overlapping Allan variations demonstrate that BDS-3 Rb and PHM clocks improve better in stability than BDS-2 Rb clock and are comparable to GPS IIF Rb and Galileo PHM clocks. Accordingly, the STDs of BDS-3 broadcast satellite clock are better than GPS and BDS-2, which are at the same level with that of Galileo. Secondly, the inter-system bias (ISB) between BDS-2 and BDS-3 is analyzed by satellite clock datum comparison and precise point positioning (PPP). Surprisingly, the discrepancy between BDS-2 and BDS-3 satellite clock datum has a great difference between products that could reach up to about 10 ns for WHU satellite clock products and broadcast ephemeris. Moreover, the ISBs between BDS-2 and BDS-3 satellite clocks are quite stable over one-year periods. Thirdly, due to the improved stability of BDS-3 atomic clock, the 68% positioning accuracy is better than 0.65 m at 10 min for BDS-3 PPP, based on broadcast ephemeris. Besides, the non-negligible bias between BDS-2 and BDS-3 will greatly affect the BDS precise data processing. The accuracy of positioning is greatly improved when considering the ISB.
Precise point positioning (PPP) has received much attention in recent years for its low cost, high accuracy, and global coverage. Nowadays, PPP with ambiguity resolution and atmospheric augmentation is widely regarded as PPP-RTK (real-time kinematic), which weakens the influence of the long convergence time in PPP and regional service coverage in RTK. However, PPP-RTK cannot work well in urban areas due to limitations of non-line-of-sight (NLOS) conditions. Inertial navigation systems (INS) and vision can realize continuous navigation but suffer from error accumulation. Accordingly, the integration model of multi-GNSS (global navigation satellite system) and PPP-RTK/INS/vision with a cascading Kalman filter and dynamic object removal model was proposed to improve the performance of vehicle navigation in urban areas. Two vehicular tests denoted T01 and T02 were conducted in urban areas to evaluate the navigation performance of the proposed model. T01 was conducted in a relatively open-sky environment and T02 was collected in a GNSS-challenged environment with many obstacles blocking the GNSS signals. The positioning results show that the dynamic object removal model can work well in T02. The results indicate that multi-GNSS PPP-RTK/INS/vision with a cascading Kalman filter can achieve a positioning accuracy of 0.08 m and 0.09 m for T01 in the horizontal and vertical directions and 0.83 m and 0.91 m for T02 in the horizontal and vertical directions, respectively. The accuracy of the velocity and attitude estimations is greatly improved by the introduction of vision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.