The Internet of Medical Things (IoMT) is a huge, exciting new phenomenon that is changing the world of technology and innovating various industries, including healthcare. It has specific applications and changes in the medical world based on what can be done for clinical workflow models. The first and most fundamental thing that IoMT does in healthcare is to bring a flood of new data into medical processes. In this study, an efficient Internet of Medical Things based cancer detection model was proposed. In fact, for many, new fitness monitors and watches are one of the best examples on the Internet; these mobile, portable, wearable devices can record real-time heart rate, blood pressure, and eye movement of cancer patients. These details are sent to doctors or anywhere else. The proposed method leads to a kind of big data renaissance in the health service. The proposed model gets more accuracy while comparing with the existing models. This will help the doctors to analyze the patients’ health report and provides better treatment.
The Indian subcontinent is known for its larger coastline spanning, over 8100 km and is considered the habitat for many millions of people. The livelihood of their habitat is purely dependent upon the fishing activities. Often, the search for fish requires more time for catching and more resources, thus increasing the operational cost leading to low profitability. With the advent of artificial intelligence algorithms, designing intelligent algorithms for an effective prediction of fishing areas has reached new heights in terms of high accuracy (Acy) and less time. But still, predicting the location of potential fishing zones (PFZs) is always a daunting task. To reduce these issues, this work presented the novel hybrid prediction architecture of PFZs using remote sensing images. The proposed architecture integrates the deep convolutional layers and flitter bat optimized long short-term memory (FB-LSTM)-based recurrent neural networks (RNN). These convolutional layers are utilized to remove the various color features such as chlorophyll, sea surface temperature (SST), and GPS location from the satellite images, and FB-LTSM is utilized to predict the potential locations for fishing. The extensive experimentations are carried out utilizing the satellite data from Indian National Centre for Ocean Information Services (INCOIS) and implemented using TensorFlow 1.18 with Keras API. The performance metrics such as prediction Acy, precision (Pscn), recall (Rcl) or sensitivity (Sty), specificity (Sfy), and F1-score and compared with other existing intelligent learning models. From our observations, the proposed architecture (99% prediction Acy) has outperformed the other existing algorithms and finds its best place in designing an intelligent system for better predicting of PFZs.
In the medical field, some specialized applications are currently being used to treat various ailments. These activities are being carried out with extra care, especially for cancer patients. Physicians are seeking the help of technology to help diagnose cancer, its dosage, its current status, cancer classification, and appropriate treatment. The machine learning method developed by an artificial intelligence is proposed here in order to effectively assist the doctors in that regard. Its design methods obtain highly complex cancerous inputs and clearly describe its type and dosage. It is also recommending the effects of cancer and appropriate medical procedures to the doctors. This method ensures that a lot of doctors’ time is saved. In a saturation point, the proposed model achieved 93.31% of image recognition, 6.69% of image rejection, 94.22% accuracy, 92.42% of precision, 93.94% of recall rate, 92.6% of F1-score, and 2178 ms of computational speed. This shows that the proposed model performs well while compared with the existing methods.
The estimated 30 million children and adults are suffering with diabetes across the world. A person with diabetes can recognize several symptoms, and it can also be tested using retina image as diabetes also affects the human eye. The doctor is usually able to detect retinal changes quickly and can help prevent vision loss. Therefore, regular eye examinations are very important. Diabetes is a chronic disease that affects various parts of the human body including the retina. It can also be considered as major cause for blindness in developed countries. This paper deals with classification of retinal image into diabetes or not with the help of deep learning algorithms and architecture. Hence, deep learning is beneficial for classification of medical images specifically such a complex image of human retina. A large number of image data are considered throughout the project on which classification is performed by using binary classifier. On applying certain deep learning algorithms, model results into the training accuracy of 96.68% and validation accuracy of 66.82%. Diabetic retinopathy can be considered as an effective and efficient method for diabetes detection.
The Internet of Things (IoT) contributes to improving and automating the quality of our lives via devices and applications that progressively become more interconnected without user intervention in many areas such as smart homes, smart cities, smart transportation, and smart environment. However, IoT devices are vulnerable to cyberattacks. We cannot prevent all attacks, but they can be detected and resolved with the least damage. Moreover, they are connected for long periods of time without user intervention. Additionally, since they remain connected for long periods of time without user intervention, creative solutions must be devised to keep them safe, such as machine learning. The reach goal is to evaluate different machine learning algorithms to detect IoT network attacks quickly and effectively. The Bot-IoT dataset, which is derived from the original dataset, is used to evaluate various detection algorithms. Five different machine learning algorithms were tested on the two databases, and the results of the tests revealed high and accurate performance at all levels of the dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.