The Indian subcontinent is known for its larger coastline spanning, over 8100 km and is considered the habitat for many millions of people. The livelihood of their habitat is purely dependent upon the fishing activities. Often, the search for fish requires more time for catching and more resources, thus increasing the operational cost leading to low profitability. With the advent of artificial intelligence algorithms, designing intelligent algorithms for an effective prediction of fishing areas has reached new heights in terms of high accuracy (Acy) and less time. But still, predicting the location of potential fishing zones (PFZs) is always a daunting task. To reduce these issues, this work presented the novel hybrid prediction architecture of PFZs using remote sensing images. The proposed architecture integrates the deep convolutional layers and flitter bat optimized long short-term memory (FB-LSTM)-based recurrent neural networks (RNN). These convolutional layers are utilized to remove the various color features such as chlorophyll, sea surface temperature (SST), and GPS location from the satellite images, and FB-LTSM is utilized to predict the potential locations for fishing. The extensive experimentations are carried out utilizing the satellite data from Indian National Centre for Ocean Information Services (INCOIS) and implemented using TensorFlow 1.18 with Keras API. The performance metrics such as prediction Acy, precision (Pscn), recall (Rcl) or sensitivity (Sty), specificity (Sfy), and F1-score and compared with other existing intelligent learning models. From our observations, the proposed architecture (99% prediction Acy) has outperformed the other existing algorithms and finds its best place in designing an intelligent system for better predicting of PFZs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.