This study was conducted at the Dangishta watershed in the Ethiopian highlands to evaluate irrigation potential from surface and groundwater sources under different farming and water application systems. Daily streamflow and the groundwater table were monitored from 2015 to 2017. Shallow groundwater recharge was estimated using the water table fluctuation method. Automated baseflow separation techniques were used to determine the amount of runoff and baseflow from the total streamflow records. The potential of groundwater and runoff to sustain dry season irrigation (i.e., low flow) was evaluated considering two tillage systems (i.e., conservation agriculture, CA; and conventional tillage, CT), and water application (i.e., drip and overhead) systems for major irrigated crops (i.e., onion, garlic, cabbage, and pepper) grown in the Dangishta watershed. We found that the annual groundwater recharge varied from 320 to 358 mm during the study period, which was about 17% to 22% of the annual rainfall. The annual surface runoff depth ranged from 192 to 268 mm from 2015 to 2017. The results reveal that the maximum seasonal irrigable land from groundwater recharge was observed under CA with drip irrigation (i.e., 2251 and 2992 ha from groundwater recharge and surface runoff, respectively). By comparison, in the CT practice with overhead irrigation, the lowest seasonal irrigable land was observed (i.e., 1746 and 2121 ha from groundwater and surface runoff, respectively). From the low flow analysis, about 199 and 173 ha of one season’s irrigable land could be irrigated using the CA and CT systems, respectively, both with drip irrigation. Similarly, two-season overhead irrigation potential from low flow under CA and CT was found to be about 87 and 76 ha, respectively. The dry season irrigable land using low flow could be increased from 9% to 16% using the CA system for the various vegetables, whereas drip irrigation could increase the irrigable land potential by 56% compared to overhead irrigation. The combined use of groundwater recharge and runoff could sustain up to 94% of the dry season low flow irrigation through the combination of the CA system and drip irrigation. Decision makers must consider the introduction of feasible and affordable technologies to make use of groundwater and direct runoff, to maximize the potential of dry season production through efficient and appropriate CA and water management practices.
Agricultural intensification in sub-Saharan African countries has significantly increased pesticide applications. Information on pesticide residues and their transport in groundwater and streams is needed to properly manage and reduce any harm to the ecosystem and environment. This information is lacking in the volcanic soils of Ethiopian highlands. Therefore, this study was conducted to assess pesticide concentrations in ground and surface water and their risk to humans and aquatic life. The 9 km2 rural watershed Robit Bata in the Lake Tana Basin was selected. Crops were grown under rainfed and irrigated conditions. Pesticide use was assessed, and groundwater samples were collected from eight wells and surface water samples at the outlet twice in the rain phase and once in the dry phase. Samples were analyzed for chlorpyrifos, dimethoate, (α and β) endosulfan, profenofos, , and pH. Chlorpyrifos and endosulfan, which are strongly adsorbed and slowly degrading pesticides, were found in nearly all surface and groundwater samples, with maximum concentrations in surface water of 8 µg L−¹ for chlorpyrifos and 3 µg L−¹ endosulfan. Maximum groundwater concentrations were only slightly lower. The weakly adsorbed and fast degrading pesticides, dimethoate, and profenofos were detected only in the rain phase after spraying in the groundwater, indicating preferential transport to groundwater at depths of up to 9 m. The average concentration was 0.38 μg L−¹ for dimethoate in surface waters and 1.24 μg L−¹ in groundwater. Profenofos was not detected in surface water. In the groundwater, the average concentration was 0.05 μg L−¹. Surface water concentrations of chlorpyrifos and endosulfan were highly toxic to fish. The World Health Organization banned these pesticides worldwide. It should be phased out for use in Ethiopia to safeguard the ecological health of Lake Tana, which is rich in biodiversity and endemic fish species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.