Ambitious climate policies, as well as economic development, education, technological progress and less resource-intensive lifestyles, are crucial elements for progress towards the UN Sustainable Development Goals (SDGs). However, using an integrated modelling framework covering 56 indicators or proxies across all 17 SDGs, we show that they are insufficient to reach the targets. An additional sustainable development package, including international climate finance, progressive redistribution of carbon pricing revenues, sufficient and healthy nutrition and improved access to modern energy, enables a more comprehensive sustainable development pathway. We quantify climate and SDG outcomes, showing that these interventions substantially boost progress towards many aspects of the UN Agenda 2030 and simultaneously facilitate reaching ambitious climate targets. Nonetheless, several important gaps remain; for example, with respect to the eradication of extreme poverty (180 million people remaining in 2030). These gaps can be closed by 2050 for many SDGs while also respecting the 1.5 °C target and several other planetary boundaries.
Abstract. The open-source modeling framework MAgPIE (Model of Agricultural Production and its Impact on the Environment) combines economic and biophysical approaches to simulate spatially explicit global scenarios of land use within the 21st century and the respective interactions with the environment. Besides various other projects, it was used to simulate marker scenarios of the Shared Socioeconomic Pathways (SSPs) and contributed substantially to multiple IPCC assessments. However, with growing scope and detail, the non-linear model has become increasingly complex, computationally intensive and non-transparent, requiring structured approaches to improve the development and evaluation of the model.Here, we provide an overview on version 4 of MAgPIE and how it addresses these issues of increasing complexity using new technical features: modular structure with exchangeable module implementations, flexible spatial resolution, in-code documentation, automatized code checking, model/output evaluation and open accessibility. Application examples provide insights into model evaluation, modular flexibility and region-specific analysis approaches. While this paper is focused on the general framework as such, the publication is accompanied by a detailed model documentation describing contents and equations, and by model evaluation documents giving insights into model performance for a broad range of variables.With the open-source release of the MAgPIE 4 framework, we hope to contribute to more transparent, reproducible and collaborative research in the field. Due to its modularity and spatial flexibility, it should provide a basis for a broad range of land-related research with economic or biophysical, global or regional focus.
Using engineered wood for construction has been discussed for climate change mitigation. It remains unclear where and in which way the additional demand for wooden construction material shall be fulfilled. Here we assess the global and regional impacts of increased demand for engineered wood on land use and associated CO2 emissions until 2100 using an open-source land system model. We show that if 90% of the new urban population would be housed in newly built urban mid-rise buildings with wooden constructions, 106 Gt of additional CO2 could be saved by 2100. Forest plantations would need to expand by up to 149 Mha by 2100 and harvests from unprotected natural forests would increase. Our results indicate that expansion of timber plantations for wooden buildings is possible without major repercussions on agricultural production. Strong governance and careful planning are required to ensure a sustainable transition to timber cities even if frontier forests and biodiversity hotspots are protected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.