Bone repair bionanocomposite scaffolds were produced by incorporating dense bioactive glass nanoparticles or mesoporous bioactive glass nanospheres into a chitosan-gelatin polymer blend. The in vitro bioactivity of the scaffolds was assessed in simulated body fluid, and cell viability and osteogenic differentiation assays were performed with dental pulp stem cells. Bone regeneration properties of the scaffold materials were in vivo assessed by using a critical-sized femoral defect model in rat. The scaffold nanocomposites showed excellent cytocompatibility and ability to accelerate the crystallization of bone-like apatite in vitro. Bionanocomposites prepared with bioactive glass nanoparticles were particularly more active to promote the osteogenic differentiation of dental pulp stem cells as judged by the higher activity of alkaline phosphatase. This result is attributed to the faster dissolution of bioactive glass nanoparticles into osteogenic ionic products compared to mesoporous bioactive glass nanospheres. In vivo experiments demonstrated that bioactive glass nanoparticles (5%)/chitosan-gelatin bionanocomposite significantly produces the highest amount of new bone (∼80%) in the defect area after eight weeks of implantation. The bone regeneration capacity exhibited by the scaffolds formulated with nanodimensional bioactive glass particles make them attractive for bone reconstruction applications.
Although the field of personnel selection has amounted around 100 years of research, there has been an overrepresentation of American and Western European samples in these studies. In particular, samples from Latin America have been almost entirely absent from industrial and organizational psychology journals. Thus, it is unknown whether welldocumented findings, such as the prediction of job performance based on general mental ability and conscientiousness, replicate in this region. This research intended to address this gap in the literature with three studies conducted in Chilean organizations, using different research designs, and different operationalizations of predictors and criteria. Results are generally consistent with previous studies, showing that conscientiousness and general mental ability significantly predict job performance in these Chilean samples.
Bone reconstruction in the oral and maxillofacial region presents particular challenges related to the development of biomaterials with osteoinductive properties and suitable physical characteristics for their surgical use in irregular bony defects. In this work, the preparation and bioactivity of chitosan–gelatin (ChG) hydrogel beads loaded with either bioactive glass nanoparticles (nBG) or mesoporous bioactive glass nanospheres (nMBG) were studied. In vitro testing of the bionanocomposite beads was carried out in simulated body fluid, and through viability and osteogenic differentiation assays using dental pulp stem cells (DPSCs). In vivo bone regenerative properties of the biomaterials were assessed using a rat femoral defect model and compared with a traditional maxillary allograft (Puros®). ChG hydrogel beads containing homogeneously distributed BG nanoparticles promoted rapid bone—like apatite mineralization and induced the osteogenic differentiation of DPSCs in vitro. The bionanocomposite beads loaded with either nBG or nMBG also produced a greater bone tissue formation in vivo as compared to Puros® after 8 weeks of implantation. The osteoinductivity capacity of the bionanocomposite hydrogel beads coupled with their physical properties make them promissory for the reconstruction of irregular and less accessible maxillary bone defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.