Bone repair bionanocomposite scaffolds were produced by incorporating dense bioactive glass nanoparticles or mesoporous bioactive glass nanospheres into a chitosan-gelatin polymer blend. The in vitro bioactivity of the scaffolds was assessed in simulated body fluid, and cell viability and osteogenic differentiation assays were performed with dental pulp stem cells. Bone regeneration properties of the scaffold materials were in vivo assessed by using a critical-sized femoral defect model in rat. The scaffold nanocomposites showed excellent cytocompatibility and ability to accelerate the crystallization of bone-like apatite in vitro. Bionanocomposites prepared with bioactive glass nanoparticles were particularly more active to promote the osteogenic differentiation of dental pulp stem cells as judged by the higher activity of alkaline phosphatase. This result is attributed to the faster dissolution of bioactive glass nanoparticles into osteogenic ionic products compared to mesoporous bioactive glass nanospheres. In vivo experiments demonstrated that bioactive glass nanoparticles (5%)/chitosan-gelatin bionanocomposite significantly produces the highest amount of new bone (∼80%) in the defect area after eight weeks of implantation. The bone regeneration capacity exhibited by the scaffolds formulated with nanodimensional bioactive glass particles make them attractive for bone reconstruction applications.
Periodontitis is an inflammatory disease, in which the host immuno‐inflammatory response against the dysbiotic subgingival biofilm leads to the breakdown of periodontal tissues. Most of the available treatments seem to be effective in the short‐term; nevertheless, permanent periodical controls and patient compliance compromise long‐term success. Different strategies have been proposed for the modulation of the host immune response as potential therapeutic tools to take a better care of most susceptible periodontitis patients, such as drug local delivery approaches. Though, maintaining an effective drug concentration for a prolonged period of time has not been achieved yet. In this context, advanced drug delivery strategies using biodegradable nanocarriers have been proposed to avoid toxicity and frequency‐related problems of treatment. The versatility of distinct nanocarriers allows the improvement of their loading and release capabilities and could be potentially used for microbiological control, periodontal regeneration, and/or immunomodulation. In the present review, we revise and discuss the most frequent biodegradable nanocarrier strategies proposed for the treatment of periodontitis, including polylactic‐co‐glycolic acid (PLGA), chitosan, and silica‐derived nanoparticles, and further suggest novel therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.