Flavins are versatile biological cofactors which catalyze proton-coupled electron transfers (PCET) with varying number and coupling of electrons. Flavin mediated oxidation of nicotinamide adenine dinucleotide (NADH) and of succinate, initial redox reactions in cellular respiration, were examined here with multiconfigurational quantum chemical calculations and a simple analysis of the wave-function proposed to quantify electron transfer along the proton reaction coordinate. The mechanism of NADH oxidation is a prototypical hydride transfer, with two electrons moving concerted with the proton to the same acceptor group. However, succinate oxidation depends on the elimination step and can proceed through the transfer of hydride or hydrogen-atom, with proton and electrons moving to different groups in both cases. These results help to determine the mechanism of fundamental but still debated biochemical reactions, and illustrate a new diagnostic tool for electron transfer that can be useful to characterize a broad class of PCET processes.
Human metallothionein (MT) is a small-size yet efficient metal-binding protein, playing an essential role in metal homeostasis and heavy metal detoxification. MT contains two domains, each forming a polynuclear metal cluster with an exquisite hexatomic ring structure. The apoprotein is intrinsically disordered, which may strongly influence the clusters and the metal-thiolate (M-S) bonds, leading to a highly dynamic structure. However, these features are challenging to identify due to the transient nature of these species. The individual signal from dynamic conformations with different states of the cluster and M-S bond will be averaged and blurred in classic ensemble measurement. To circumvent these problems, we combined a single-molecule approach and multiscale molecular simulations to investigate the rupture mechanism and chemical stability of the metal cluster by a single MT molecule, focusing on the Zn4S11 cluster in the α domain upon unfolding. Unusual multiple unfolding pathways and intermediates are observed for both domains, corresponding to different combinations of M-S bond rupture. None of the pathways is clearly preferred suggesting that unfolding proceeds from the distribution of protein conformational substates with similar M-S bond strengths. Simulations indicate that the metal cluster may rearrange, forming and breaking metal-thiolate bonds even when MT is folded independently of large protein backbone reconfiguration. Thus, a highly dynamic polynuclear metal cluster with multiple conformational states is revealed in MT, responsible for the binding promiscuity and diverse cellular functions of this metal-carrier protein.
Iron–sulfur (FeS) clusters are essential metal cofactors involved in a wide variety of biological functions. Their catalytic efficiency, biosynthesis, and regulation depend on FeS stability in aqueous solution. Here, molecular modeling is used to investigate the hydrolysis of an oxidized (ferric) mononuclear FeS cluster by bare dissociation and water substitution mechanisms in neutral and acidic solution. First, approximate electronic structure descriptions of FeS reactions by density functional theory are validated against high-level wave function CCSD(T) calculations. Solvation contributions are included by an all-atom model with hybrid quantum chemical/molecular mechanical (QM/MM) potentials and enhanced sampling molecular dynamics simulations. The free energy profile obtained for FeS cluster hydrolysis indicates that the hybrid functional M06 together with an implicit solvent correction capture the most important aspects of FeS cluster reactivity in aqueous solution. Then, 20 reaction channels leading to two consecutive Fe–S bond ruptures were explored with this calibrated model. For all protonation states, nucleophilic substitution with concerted bond breaking and forming to iron is the preferred mechanism, both kinetic and thermodynamically. In neutral solution, proton transfer from water to the sulfur leaving group is also concerted. Dissociative reactions show higher barriers and will not be relevant for FeS reactivity when exposed to solvent. These hydrolysis mechanisms may help to explain the stability and catalytic mechanisms of FeS clusters of multiple sizes and proteins.
Cytochrome bc 1 is a fundamental enzyme for cellular respiration and photosynthesis. This dimeric protein complex catalyzes a proton-coupled electron transfer (PCET) from the reduced coenzyme-Q substrate (Q) to a bimetallic iron− sulfur cluster in the Q o active site. Herein, we combine molecular dynamics simulations of the complete cytochrome bc 1 protein with electronic-structure calculations of truncated models and a semiclassical tunneling theory to investigate the electron−proton adiabaticity of the initial reaction catalyzed in the Q o site. After sampling possible orientations between the Q substrate and a histidine side chain that functions as hydrogen acceptor, we find that a truncated model composed by ubiquinol-methyl and imidazole-iron(III)-sulfide captures the expected changes in oxidation and spin states of the electron donor and acceptor. Diabatic electronic surfaces obtained for this model with multiconfigurational wave function calculations demonstrate that this reaction is electronic nonadiabatic, and proton tunneling is faster than mixing of electronic configurations. These results indicate the formalism that should be used to calculate vibronic couplings and kinetic parameters for the initial reaction in the Q o site of cytochrome bc 1 . This framework for molecular simulation may also be applied to investigate other PCET reactions in the Q-cycle or in various metalloproteins that catalyze proton translocation coupled to redox processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.