Cervical cancer is the second most common malignant tumor in women worldwide and has a high mortality rate, especially when it is associated with human papillomavirus (HPV). In US, an estimated 12,820 cases of invasive cervical cancer and an estimated 4210 deaths from this cancer will occur in 2017. With rare and very aggressive conventional treatments, one sees in the real need of new alternatives of therapy as the delivery of chemotherapeutic agents by nanocarriers using nanotechnology. This review covers different drug delivery systems applied in the treatment of cervical cancer, such as solid lipid nanoparticles (SNLs), liposomes, nanoemulsions and polymeric nanoparticles (PNPs). The main advantages of drug delivery thus improving pharmacological activity, improving solubility, bioavailability to bioavailability reducing toxicity in the target tissue by targeting of ligands, thus facilitating new innovative therapeutic technologies in a too much needed area. Among the main disadvantage is the still high cost of production of these nanocarriers. Therefore, the aim this paper is review the nanotechnology based drug delivery systems in the treatment of cervical cancer.
There have been few studies on the pharmacological properties of Rhamnus sphaerosperma var. pubescens, a native Brazilian species popularly known as “fruto-de-pombo.” The aim of this study was to investigate the scavenging capacity of emodin, physcion, and the ethanolic crude extract of Rhamnus sphaerosperma var. pubescens against reactive oxygen and nitrogen species, as well as their role and plausible mechanisms in prompting cell death and changes in AKT phosphorylation after cervical (SiHa and C33A) and oral (HSC-3) squamous cell carcinoma treatments. Emodin was shown to be the best scavenger of NO• and O2•−, while all samples were equally effective in HOCl/OCl− capture. Emodin, physcion, and the ethanolic extract all exhibited cytotoxic effects on SiHa, C33A, HSC-3, and HaCaT (immortalized human keratinocytes, nontumorigenic cell line), involving mixed cell death (apoptosis and necrosis) independent of the caspase activation pathway. Emodin, physcion, and the ethanolic extract increased intracellular oxidative stress and DNA damage. Emodin decreased the activation of AKT in all tumor cells, physcion in HSC-3 and HaCaT cells, and the ethanolic extract in C33A and HaCaT cells, respectively. The induction of cancer cell death by emodin, physcion, and the ethanolic crude extract of Rhamnus sphaerosperma var. pubescens was related to an increase in intracellular oxidative stress and DNA damage and a decrease in AKT activation. These molecules are therefore emerging as interesting candidates for further study as novel options to treat cervical and oral carcinomas.
These results indicated that NTB could play a role in decreasing glycolysis . Since tumor cells prefer the glycolytic pathway to generate energy, these findings suggest that NTB may be a reliable model for the study of human cervical cancer cell lines immortalized by HPV16, however more experiments can be performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.