To elucidate the role of extracellular histidines in the modulation of the rat P2X 4 receptor by trace metals, we generated single, double, and triple histidine mutants for residues 140, 241, and 286, replacing them with alanines. cDNAs for the wild-type and receptor mutants were expressed in Xenopus laevis oocytes and in human embryonic kidney 293 cells and examined by the two electrode and patch clamp techniques, respectively. Whereas copper inhibited concentration-dependently the ATP-gated currents in the wild-type and in the single or double H241A and H286A receptor mutants, all receptors containing H140A were insensitive to copper in both cell systems. The characteristic bell-shaped concentration-response curve of zinc observed in the wildtype receptor became sigmoid in both oocytes and human embryonic kidney cells expressing the H140A mutant; in these mutants, the zinc potentiation was 2.5-4-fold larger than in the wild-type. Results with the H140T and H140R mutants further support the importance of a histidine residue at this position. We conclude that His-140 is critical for the action of copper, indicating that this histidine residue, but not His-241 or His-286, forms part of the inhibitory allosteric metal-binding site of the P2X 4 receptor, which is distinct from the putative zinc facilitator binding site.The notion that trace metals such as zinc or copper are atypical brain messengers has attracted much attention in view of their emerging role in the modulation of brain excitability (1). The importance of trace metals in synaptic activity is highlighted by the description that both copper and zinc are stored in synaptic vesicles from where they are released by electrical depolarization, reaching a high micromolar concentration at the synaptic cleft (2-4). Trace metals are known to modulate a wide variety of brain ionotropic receptors such as glycine, N-methyl-D-aspartate, ␥-aminobutyric acid, nicotinic, and the novel nucleotide receptors (P2X) family (5-9). The P2X purinoceptors are homomeric or heteromeric membrane channels gated by extracellular ATP and related synthetic nucleotides; North (10) recently reviewed the principles of the molecular physiology of this family of receptors. Within the P2X receptor family, the P2X 4 is the most widely distributed in the central nervous system, including the cerebellum and the CA1 region of the hippocampus, where it has been proposed to play a role in glutamatergic synapses (11).The P2X 4 receptor is an interesting model of an ionic channel differentially modulated by trace metals. Acuñ a-Castillo et al. (12) and Coddou et al. (13) reported that zinc potentiates the ATP-evoked currents whereas copper has an inhibitory effect on the activity of this receptor. Based on these findings, Acuñ aCastillo et al. (12) proposed that trace metals modulate the activity of the P2X 4 receptor via two separate metal-binding sites. One of these sites has a preferential selectivity for copper and is characterized by a non-competitive inhibition of the ATP-gated channel acti...
The polychlorinated biphenyl (PCB)-degrading Pseudomonas sp. B4 was tested for its motility and ability to sense and respond to biphenyl, its chloroderivatives and chlorobenzoates in chemotaxis assays. Pseudomonas sp. B4 was attracted to biphenyl, PCBs and benzoate in swarm plate and capillary assays. Chemotaxis towards these compounds correlated with their use as carbon and energy sources. No chemotactic effect was observed in the presence of 2- and 3-chlorobenzoates. Furthermore, a toxic effect was observed when the microorganism was exposed to 3-chlorobenzoate. A nonmotile Pseudomonas sp. B4 transformant and Burkholderia xenovorans LB400, the laboratory model strain for PCB degradation, were both capable of growing in biphenyl as the sole carbon source, but showed a clear disadvantage to access the pollutants to be degraded, compared with the highly motile Pseudomonas sp. B4, stressing the importance of motility and chemotaxis in this environmental biodegradation.
Thraustochytrids are unicellular protists belonging to the Labyrinthulomycetes class, which are characterized by the presence of a high lipid content that could replace conventional fatty acids. They show a wide geographic distribution, however their diversity in the Antarctic Region is rather scarce. The analysis based on the complete sequence of 18S rRNA gene showed that strain 34-2 belongs to the species Thraustochytrium kinnei, with 99% identity. The total lipid profile shows a wide range of saturated fatty acids with abundance of palmitic acid (16:0), showing a range of 16.1–19.7%. On the other hand, long-chain polyunsaturated fatty acids, mainly docosahexaenoic acid and eicosapentaenoic acid are present in a range of 24–48% and 6.1–9.3%, respectively. All factors analyzed in cells (biomass, carbon consumption and lipid content) changed with variations of culture temperature (10 °C and 25 °C). The growth in glucose at a temperature of 10 °C presented the most favorable conditions to produce omega-3fatty acid. This research provides the identification and characterization of a Thraustochytrids strain, with a total lipid content that presents potential applications in the production of nutritional supplements and as well biofuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.