To reduce transmission of the coronavirus, the Brazilian government adopted containment measures to control the virus’ spread, including limitations to the practice of physical activity. It was aimed to analyze the effects of COVID-19 quarantine on physical activity levels, energy expenditure, quality of life, and level of stress in a sample of the Brazilian population. The sample included 426 participants (7 to 80 years). The International Physical Activity Questionnaire, Short form survey-36 (SF-36), and Stress Perception Scale, were used to assess the level of physical activity, quality of life and stress, respectively. The anthropometric data was used to the assessment of body mass index and basal metabolic rate. Body weight increased significantly in all sample (p < 0.05). During the pandemic, 84% of the sample indicated a low level of physical activity. Furthermore, weekly energy expenditure decreased significantly in all age groups during the pandemic (children p < 0.0001; adolescents: p < 0.0001; adults p < 0.001, and elderly p < 0.0001). All aspects of quality of life, significantly reduced in both sexes in all age groups (p < 0.05). With the exception of children, stress levels increased significantly during the pandemic (adolescents: male: p = 0.003, female: p < 0.05; adults: male: p = 0.003, female: p = 0.01, and elderly: male: p = 0.02, female: p = 0.03). Findings from the present study suggests that COVID-19 social isolation has negatively affected Brazilian’ physical activity and quality of life.
The aim of this study is to evaluate the effect of ingesting ibuprofen on post-workout recovery of muscle damage, body temperature and muscle power indicators in Paralympic powerlifting athletes. The study was carried out with eight Paralympic powerlifting athletes (aged 27.0 ± 5.3 years and 79.9 ± 25.5 kg of body mass) competing at the national level, with a minimum training experience of 12 months, who all submitted to two experimental conditions: Ibuprofen (2 × 00 mg) and control. The maximal isometric force of the upper limbs and rate of force development, thermography, and serum biochemical analyzes of creatine kinase, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase were measured before, after, 24 h after and 48 h after the intervention. Maximal isometric force only decreased in the placebo condition, which increased back to baseline levels, while no substantial decline in baseline force was seen in the ibuprofen condition, although no effect for exercise condition was detected. After the exercise, the rate of force development decreased significantly for both conditions and did not exceed baseline levels again after 48 h. Muscle temperature decreased significantly at 48-h post-exercise in the placebo condition, when compared with the previous day of measurement; and deltoid muscle temperature at 48-h post-exercise was higher with the ibuprofen condition. Although the results indicate some positive effects of ibuprofen use, they do not enable a clear statement regarding its positive effects on muscle function and muscle damage. Ibuprofen seems to have caused a delay in the anti-inflammatory response following exercise.
Background and Objectives: The effects of warm-up in athletic success have gained strong attention in recent studies. There is, however, a wide gap in awareness of the warm-up process to be followed, especially in Paralympic powerlifting (PP) athletes. This study aimed to analyze different types of warm-up on the physical performance of PP athletes. Materials and Methods: The sample consisted of 12 elite Brazilian PP male athletes (age, 24.14 ± 6.21 years; bodyweight, 81.67 ± 17.36 kg). The athletes performed maximum isometric force (MIF), rate of force development (RFD), and speed test (Vmax) in three different methods of warm-up. Tympanic temperature was used to estimate the central body temperature. Results: A significant difference was observed for MIF in the without warm-up (WW) condition in relation to the traditional warm-up (TW) and stretching warm-up (SW) (p = 0.005, η2p = 0.454, high effect). On the contrary, no significant differences were observed in RFD, fatigue index (FI) and time in the different types of warm up (p > 0.05). Furthermore, no significant differences were observed in relation to the maximum repetition (p = 0.121, η2p = 0.275, medium effect) or the maximum speed (p = 0.712, η2p = 0.033, low effect) between the different types of warm up. In relation to temperature, significant differences were found for the TW in relation to the “before” and “after” conditions. In addition, differences were found between WW in the “after” condition and SW. In addition, WW demonstrated a significant difference in relation to TW in the “10 min later” condition (F = 26.87, p = 0.05, η2p = 0.710, high effect). Conclusions: The different types of warm-up methods did not seem to provide significant differences in the force indicators in elite PP athletes.
The aim of this pilot study was to analyze the effect of a strength training program on indicators of trait and state anxiety in patients with ischemic stroke. The subjects were divided into two groups: experimental group (EG) consisting of 11 subjects aged 51.7 ± 8.0 years and a control group (CG) with 13 subjects aged 52.5 ± 7.7 years. EG underwent 12 weeks of strength training, with a frequency of three times a week. For data collection, a State-Trait Anxiety Inventory (STAI) was used. Significant differences were found between pre- and posttest in EG for trait anxiety (43.2 ± 12.5 pretest 39.9 ± 7.3 posttest) and state anxiety (46.9 ± 7.6 pretest 44.9 ± 7.7 posttest) with no differences in CG for trait anxiety (42.9 ± 12.2 pretest 42.6 ± 12.1 posttest) and state anxiety (47.4 ± 8.1 pretest 47.5 ± 8.0 posttest). In the evaluation between the groups, significant differences were found for all indicators of trait anxiety (39.9 ± 7.3 EG; 42.6 ± 12.1 CG) and state anxiety (44.9 ± 7.7 EG; 47.5 ± 8.0 CG). This pilot study indicates that strength training may provide an improvement in trait and state anxiety more than one year after stroke.
Background and objective: Post-exercise hypotension, the reduction of blood pressure after a bout of exercise, is of great clinical relevance. Resistance exercise training is considered an important contribution to exercise training programs for hypertensive individuals and athletes. In this context, post-exercise hypotension could be clinically relevant because it would maintain blood pressure of hypertensive individuals transiently at lower levels during day-time intervals, when blood pressure is typically at its highest levels. The aim of this study was to compare the post-exercise cardiovascular effects on Paralympic powerlifting athletes of two typical high-intensity resistance-training sessions, using either five sets of five bench press repetitions at 90% 1 repetition maximum (1RM) or five sets of three bench press repetitions at 95% 1RM. Materials and Methods: Ten national-level Paralympic weightlifting athletes (age: 26.1 ± 6.9 years; body mass: 76.8 ± 17.4 kg) completed the two resistance-training sessions, one week apart, in a random order. Results: Compared with baseline values, a reduction of 5–9% in systolic blood pressure was observed after 90% and 95% of 1RM at 20–50 min post-exercise. Furthermore, myocardial oxygen volume and double product were only significantly increased immediately after and 5 min post-exercise, while the heart rate was significantly elevated after the resistance training but decreased to baseline level by 50 min after training for both training conditions. Conclusions: A hypotensive response can be expected in elite Paralympic powerlifting athletes after typical high-intensity type resistance-training sessions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.