The decoy-database approach is currently the gold standard for assessing the confidence of identifications in shotgun proteomic experiments. Here we demonstrate that what might appear to be a good result under the decoy-database approach for a given false-discovery rate could be, in fact, the product of overfitting. This problem has been overlooked until now and could lead to obtaining boosted identification numbers whose reliability does not correspond to the expected false-discovery rate. To remedy this, we are introducing a modified version of the method, termed a semi-labeled decoy approach, which enables the statistical determination of an overfitted result.
Imagery of facial expressions in Autism Spectrum Disorder (ASD) is likely impaired but has been very difficult to capture at a neurophysiological level. We developed an approach that allowed to directly link observation of emotional expressions and imagery in ASD, and to derive biomarkers that are able to classify abnormal imagery in ASD. To provide a handle between perception and action imagery cycles it is important to use visual stimuli exploring the dynamical nature of emotion representation. We conducted a case-control study providing a link between both visualization and mental imagery of dynamic facial expressions and investigated source responses to pure face-expression contrasts. We were able to replicate the same highly group discriminative neural signatures during action observation (dynamical face expressions) and imagery, in the precuneus. Larger activation in regions involved in imagery for the ASD group suggests that this effect is compensatory. We conducted a machine learning procedure to automatically identify these group differences, based on the EEG activity during mental imagery of facial expressions. We compared two classifiers and achieved an accuracy of 81% using 15 features (both linear and non-linear) of the signal from theta, high-beta and gamma bands extracted from right-parietal locations (matching the precuneus region), further confirming the findings regarding standard statistical analysis. This robust classification of signals resulting from imagery of dynamical expressions in ASD is surprising because it far and significantly exceeds the good classification already achieved with observation of neutral face expressions (74%). This novel neural correlate of emotional imagery in autism could potentially serve as a clinical interventional target for studies designed to improve facial expression recognition, or at least as an intervention biomarker.
The growing volume of data produced continuously in the Cloud and at the Edge poses significant challenges for large-scale AI applications to extract and learn useful information from the data in a timely and efficient way. The goal of this article is to explore the use of computational storage to address such challenges by distributed near-data processing. We describe Newport, a high-performance and energy-efficient computational storage developed for realizing the full potential of in-storage processing. To the best of our knowledge, Newport is the first commodity SSD that can be configured to run a server-like operating system, greatly minimizing the effort for creating and maintaining applications running inside the storage. We analyze the benefits of using Newport by running complex AI applications such as image similarity search and object tracking on a large visual dataset. The results demonstrate that data-intensive AI workloads can be efficiently parallelized and offloaded, even to a small set of Newport drives with significant performance gains and energy savings. In addition, we introduce a comprehensive taxonomy of existing computational storage solutions together with a realistic cost analysis for high-volume production, giving a good big picture of the economic feasibility of the computational storage technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.