Photoplethysmography (PPG) signals have been widely used in evaluating cardiovascular biomarkers, however, there is a lack of in-depth understanding of the remote usage of this technology and its viability for underdeveloped countries. This study aims to quantitatively evaluate the performance of a low-cost wireless PPG device in detecting ultra-short-term time-domain pulse rate variability (PRV) parameters in different postures and breathing patterns. A total of 30 healthy subjects were recruited. ECG and PPG signals were simultaneously recorded in 3 min using miniaturized wearable sensors. Four heart rate variability (HRV) and PRV parameters were extracted from ECG and PPG signals, respectively, and compared using analysis of variance (ANOVA) or Scheirer–Ray–Hare test with post hoc analysis. In addition, the data loss was calculated as the percentage of missing sampling points. Posture did not present statistical differences across the PRV parameters but a statistical difference between indicators was found. Strong variation was found for the RMSSD indicator in the standing posture. The sitting position in both breathing patterns demonstrated the lowest data loss (1.0 ± 0.6 and 1.0 ± 0.7) and the lowest percentage of different factors for all indicators. The usage of commercial PPG and BLE devices can allow the reliable extraction of the PPG signal and PRV indicators in real time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.