Summary
The energy demand and supply projections of the Swiss government funded by the Swiss Federal Office of Energy and carried out by a consortium of institutes and consulting companies are based on two types of energy models: macroeconomic general equilibrium models and bottom-up models for each sector. While the macroeconomic models are used to deliver the economic, demographic and policy framework conditions as well as the macroeconomic impacts of particular scenarios, the bottom-up models simulate the technical developments in the final energy sectors and try to optimise electricity generation under the given boundary conditions of a particular scenario. This introductory article gives an overview of some of the energy models used in Switzerland and — more importantly — some insights into current advanced energy system modelling practice pointing to the characteristics of the two modelling types and their advantages and limitations.
Energy balances are usually aggregated at the level of subsector and energy carrier. While heating and cooling accounts for half the energy demand of the European Union’s 28 member states plus Norway, Switzerland and Iceland (EU28 + 3), currently, there are no end-use balances that match Eurostat’s energy balance for the industrial sector. Here, we present a methodology to disaggregate Eurostat’s energy balance for the industrial sector. Doing so, we add the dimensions of temperature level and end-use. The results show that, although a similar distribution of energy use by temperature level can be observed, there are considerable differences among individual countries. These differences are mainly caused by the countries’ heterogeneous economic structures, highlighting that approaches on a process level yield more differentiated results than those based on subsectors only. We calculate the final heating demand of the EU28 + 3 for industrial processes in 2012 to be 1035, 706 and 228 TWh at the respective temperature levels > 500 °C (e.g. iron and steel production), 100–500 °C (e.g. steam use in chemical industry) and < 100 °C (e.g. food industry); 346 TWh is needed for space heating. In addition, 86 TWh is calculated for the industrial process cooling demand for electricity in EU28 + 3. We estimate additional 12 TWh of electricity demand for industrial space cooling. The results presented here have contributed to policy discussions in the EU (European Commision 2016), and we expect the additional level of detail to be relevant when designing policies regarding fuel dependency, fuel switching and specific technologies (e.g. low-temperature heat applications)
The initial step of this analysis corresponds to the evaluation of the current state of the art (SoA) for various alternative fuels (AFs) and alternative sustainable automotive technologies (ASATs) across Europe, taking into account their detailed energetic, environmental and economic variables. The method to assess economic and environmental performance of AFs and ASATs corresponds to a well-to-tank (WTT) and tank-towheel (TTW) assessment complemented by scenarios until 2030, with projections of reference and high prices of major input variables of analysis. This analysis determines short and long term economic performance taking into account technology learning. 2 nd generation biofuels offer potentials for meeting future fuel-energy demand, and are currently supported by main governments and programs. Initial results of this study also indicate that second generation biofuels offer promising solutions in terms of environmental performance but production costs, conversion efficiencies and by-products are major challenges that can influence the overall economic performance considerably. In addition, price volatilities for first generation biofuels feedstock play a major role on the competitiveness and economic performance of these fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.