Insulin and insulin-like growth factor (IGF) signaling system, commonly known for fine-tuning numerous biological processes, has lately made its mark as a much sought-after therapeutic targets for diabetes and cancer. These receptors make an attractive anticancer target owing to their overexpression in variety of cancer especially in prostate and breast cancer. Inhibitors of IGF signaling were subjected to clinical cancer trials with the main objective to confirm the effectiveness of these receptors as a therapeutic target. However, the results that these trials produced proved to be disappointing as the role played by the cross talk between IGF and insulin receptor (IR) signaling pathways at the receptor level or at downstream signaling level became more lucid. Therapeutic strategy for IGF-1R and IR inhibition mainly encompasses three main approaches namely receptor blockade with monoclonal antibodies, tyrosine kinase inhibition (ATP antagonist and non-ATP antagonist), and ligand neutralization via monoclonal antibodies targeted to ligand or recombinant IGF-binding proteins. Other drug-discovery approaches are employed to target IGF-1R, and IR includes antisense oligonucleotides and recombinant IGF-binding proteins. However, therapies with monoclonal antibodies and tyrosine kinase inhibition targeting the IGF-1R are not evidenced to be satisfactory as expected. Factors that are duly held responsible for the unsuccessfulness of these therapies include (a) the existence of the IR isoform A overexpressed on a variety of cancers, enhancing the mitogenic signals to the nucleus leading to the endorsement of cell growth, (b) IGF-1R and IR that form hybrid receptors sensitive to the stimulation of all three IGF axis ligands, and (c) IGF-1R and IR that also have the potential to form hybrid receptors with other tyrosine kinase to potentiate the cellular transformation, tumorigenesis, and tumor vascularization. This mini review is a concerted effort to explore and fathom the well-recognized roles of the IRA signaling system in human cancer phenotype and the main strategies that have been so far evaluated to target the IR and IGF-1R.
Oxidative stress originates from an elevated intracellular level of free oxygen radicals that cause lipid peroxidation, protein denaturation, DNA hydroxylation, and apoptosis, ultimately impairing cell viability. Antioxidants scavenge free radicals and reduce oxidative stress, which further helps to prevent cellular damage. Medicinal plants, fruits, and spices are the primary sources of antioxidants from time immemorial. In contrast to plants, microorganisms can be used as a source of antioxidants with the advantage of fast growth under controlled conditions. Further, microbe-based antioxidants are nontoxic, noncarcinogenic, and biodegradable as compared to synthetic antioxidants. The present review aims to summarize the current state of the research on the antioxidant activity of microorganisms including actinomycetes, bacteria, fungi, protozoa, microalgae, and yeast, which produce a variety of antioxidant compounds, i.e., carotenoids, polyphenols, vitamins, and sterol, etc. Special emphasis is given to the mechanisms and signaling pathways followed by antioxidants to scavenge Reactive Oxygen Species (ROS), especially for those antioxidant compounds that have been scarcely investigated so far.
Ocimum tenuiflorum L., holy basil “Tulsi”, is an important medicinal plant that is being grown and traditionally revered throughout Indian Subcontinent for thousands of years; however, DNA sequence-based genetic diversity of this aromatic herb is not yet known. In this report, we present our studies on the phylogeography of this species using trnL-trnF intergenic spacer of plastid genome as the DNA barcode for isolates from Indian subcontinent. Our pairwise distance analyses indicated that genetic heterogeneity of isolates remained quite low, with overall mean nucleotide p-distance of 5 × 10−4. However, our sensitive phylogenetic analysis using maximum likelihood framework was able to reveal subtle intraspecific molecular evolution of this species within the subcontinent. All isolates except that from North-Central India formed a distinct phylogenetic clade, notwithstanding low bootstrap support and collapse of the clade in Bayesian Inference. North-Central isolates occupied more basal position compared to other isolates, which is suggestive of its evolutionarily primitive status. Indian isolates formed a monophyletic and well-supported clade within O. tenuiflorum clade, which indicates a distinct haplotype. Given the vast geographical area of more than 3 million km2 encompassing many exclusive biogeographical and ecological zones, relatively low rate of evolution of this herb at this locus in India is particularly interesting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.